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Today's 
agenda

‣Why constrained optimization? 

‣Foundations of constrained optimization 

‣Three core papers 

‣Conclusions and perspectives

“If I had been rich, I probably 
would not have devoted 
myself to mathematics.”
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Introduction



Widespread deployment of powerful 
machine learning models has resulted in 

mounting pressures to enhance the 
robustness, safety and fairness of such 
models—often arising from regulatory 

and ethical considerations
7



“Build now, fix later” 

▸ Inability to guarantee compliance with industry standards and governmental 

regulations limits implementation of  ML solutions in real-world applications 

▸Retro-fitting safety measures as afterthoughts! 

▸Continuous incurrence of technical debt hinders long-term progress of the field 
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Secure by design 

▸We advocate for a paradigm shift in which constraints are an integral part of 

the model development process 

▸Constrained optimization offers a rich conceptual framework accompanied by 

algorithmic tools for reliably enforce complex properties on ML models

9



Recent works on CO for ML 
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▸ Fairness: Zafar et al. (2017); Cotter et al. (2019); Hashemizadeh et al. (2024) 

▸ Safe reinforcement learning: Stooke et al. (2020) 

▸ Sparse neural network training: Gallego-Posada et al. (2022) 

▸Active learning: Elenter et al. (2022) 

▸Model quantization: Hounie et al. (2023) 

▸Dynamics of constrained learning: Sohrabi et al. (2024) 

▸ Safe RLHF: Dai et ail. (2024)
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▸Controllability 

▸Hyperparameter interpretability 

▸Better exploration of trade-offs 

▸Experimental accountability
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▸Game structure 

▸Functional representation 

of the problem
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▸Learning dynamics 

▸Computational cost 

▸Convergence guarantees 

▸Practical robustness
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▸Feasibility reigns 

▸Two axis for generalization 

▸How fast to become feasible? 

How fast to improve the loss?



Constrained optimization

g(x)

f(x)minimize
x

f(x)

subject to g(x) ≤ 0m and h(x) = 0n

realizable configurations 
𝒮 = {(g(x), f(x)) | x ∈ ℝp}

unconstrained 
optimum

constrained 
optimum (0,0)

Feasible set 
Ω = {x ∈ ℝp | g(x) ≤ 0 and h(x) = 0}

Optimality condition (necessary) 
If  is a local minimum of  over , then x* f Ω
∇f(x*)⊤z ≥ 0 ∀z ∈ FD(x*)

feasible directions at x*
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Feasibility and accountability
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g(x)

f(x)

(0,0)

Although in the unconstrained setting ★ 
would be preferred, not valid solution for 
constrained problem since it is infeasible.

Choosing the constraint level beforehand 
ensures experimental accountability.

usually informed by problem-dependent requirements 

“not allowed to cheat”
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We aim to satisfy the constraints,  
not to optimize them!



Why not just penalize?
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g(x)

f(x)

(0,0)

p*

d*

 minimize
x

f(x) + λpen g(x)

tunable hyperparameter

Tuning  typically requires a  
trial-and-error search!

λpen

In non-convex problems, there may be 
trade-offs between the objective and 

constraints that are not reachable using 
a penalized formulation.

Duality gap ≜ p* − d* ≥ 0



Lagrangian problem

min
x

f(x)

subject to g(x) ≤ 0m and h(x) = 0n
min

x
max
λ≥0, μ

𝔏(x, λ, μ) ≜ f(x) + λ⊤g(x) + μ⊤h(x)⇔
Lagrangian

“Lagrange multipliers” or “dual variables”

Role of the multipliers (cf. Karush-Kuhn-Tucker necessary conditions) 
∇f(x*) + ∑m

i=1 λ*i ∇gi(x*) + ∑n
i=1 μ*i ∇hi(x*) = 0

Algorithmic approach 
Saddle points of the Lagrangian correspond to constrained optima, but may not exist. 
Find a min-max point!
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Gradient Descent-Ascent (GDA)

min
x

max
λ≥0, μ

𝔏(x, λ, μ) ≜ f(x) + λ⊤g(x) + μ⊤h(x)Lagrangian

Algorithm 
Initialize ,  and  
Repeat 

 

 
 

If convergence check satisfied; stop 

x0 λ0 = 0 μ0 = 0

μk+1 ← μk + ηdual∇μ𝔏(xk, λk, μk) = μk + ηdual h(xk)
λk+1 ← [λk + ηdual∇λ𝔏(xk, λk, μk)]+ = [λk + ηdual g(xk)]+

xk+1 ← xk − ηprimal∇x𝔏(xk, λk, μk)

projected gradient ascent  
maintains non-negativity 
of inequality multipliers

21



Gradient Descent-Ascent (GDA)

 

 

μk+1 ← μk + ηdual∇μ𝔏(xk, λk, μk)

λk+1 ← [λk + ηdual∇λ𝔏(xk, λk, μk)]+

xk+1 ← xk − ηprimal∇x𝔏(xk, λk, μk)

22

Negligible computational overhead 
Compared to the penalized approach: only need to update value of the multipliers.

Extensibility 
Simplest possible first-order strategy. Can be combined with more sophisticated updates.

pick your favourite 
primal optimizer!



Dynamics of GDA

λk+1 = [λk + ηdual∇λ𝔏(xk, λk, μk)]+ = [λk + ηdual g(xk)]+

g(x)

time
0

λ

time
0

λ*

The multiplier accumulates the sequence of observed constraint violations.

infeasible

feasible

23

constraint violation



Contribution I



Controlled Sparsity 
via Constrained Optimization 

How I Learned to Stop Tuning Penalties & Love Constraints

Akram ErraqabiJuan Ramirez Simon Lacoste-JulienYoshua BengioJose Gallego-Posada

NeurIPS 2022



(We originally wanted to write a paper on 
constrained optimization.  

The result was a “case study” on the use of 
constrained optimization for training 

sparse neural networks.)
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Sparsity via L  regularization0
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Challenges with  
▸ Strength of the regularization is mediated by coefficient . 
▸ Tuning  to achieve a pre-determined sparsity level is expensive. 

λpen
λpen

λpen

L  reparametrization 
Louizos et al. (2018) introduced a stochastic, differentiable reparametrization  for 
training sparse neural networks  

0
θ = θ̃ ⊙ z

L -“norm” penalty induces sparsity0

min
θ̃,ϕ

𝔼z | ϕ [L𝒟 (θ̃ ⊙ z)] + λpen𝔼z | ϕ [∥z∥0]

stochastic binary gates

Louizos, C., Welling, M. and Kingma, D. Learning Sparse Neural Networks Through L  Regularization. In ICLR, 2018. 0



Instead of penalizing, formulate sparsity 
goals as L -norm constraints and solve 

the Lagrangian min-max problem
0

28

min
θ̃,ϕ

𝔼z | ϕ [L𝒟 (θ̃ ⊙ z)]
✔ Interpretable hyperparameter semantics: target sparsity level 

✔ Reliable control over the model sparsity

subject to
𝔼z | ϕ [∥z∥0]

#(θ)
≤ ϵ



Contributions

29

▸ Proposed a constrained approach for learning models with controllable levels of 

sparsity, highlighting its benefits with respect to the popular penalized approach 

▸ Introduced a heuristic called ”dual restarts” to avoid excessive sparsity caused by 

accumulation of constraint violations in the multipliers 

▸ Through simple experimental adjustments, we managed to successfully train sparse 

(Wide)ResNets — prior experimental studies had failed at this!    

▸ Demonstrated that we can reliably achieve controllable sparsity levels across many 

different architectures and datasets — without compromising performance



Dual Restarts
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Motivation of dual restarts as a “conditional” best response 
The game-theoretic best response of the dual player to a primal action  is:(θ̃, ϕ)

λBR
co (θ̃, ϕ) = argmax

λco≥0
𝔏(θ̃, ϕ, λco) = argmax

λco≥0
f(θ̃, ϕ) + λ⊤

co (g(ϕ) − ϵ)

This is a linear program whose solution depends purely on the feasibility of :(θ̃, ϕ)

λBR
co (θ̃, ϕ) =

∞ if  g(ϕ) > ϵ
ℝ+ if  g(ϕ) = ϵ
0 if  g(ϕ) < ϵ

When using GDA, the multipliers can be excessively large, even at a feasible primal iterate. 



Training Dynamics

31Dual Restarts      No Dual Restarts     First Feasibility

L -density0 Multiplier Training Loss Validation Error

Dataset: MNIST     Model: LeNet5

ϵ
=

30
%

ϵ
=

70
%



Achieving controlled sparsity

32⏺ Constrained    ★ Penalized

Dataset: Tiny-ImageNet     Model: ResNet18



Achieving controlled sparsity

33⏺ Constrained    ★ Penalized

Dataset: Tiny-ImageNet     Model: ResNet18



Achieving controlled sparsity

34⏺ Constrained    ★ Penalized

Dataset: Tiny-ImageNet     Model: ResNet18



… while retaining performance!

35⏺ Constrained    ★ Penalized

Dataset: Tiny-ImageNet     Model: ResNet18



Contribution IV



On PI controllers for  
updating Lagrange multipliers in 

constrained optimization

Tianyue H. ZhangJuan Ramirez Simon Lacoste-Julien Jose Gallego-Posada

ICML 2024

Motahareh Sohrabi



Dynamics of GDA

λk+1 = [λk + ηdual∇λ𝔏(xk, λk, μk)]+ = [λk + ηdual g(xk)]+

g(x)

time
0

λ

time
0

λ*

The multiplier accumulates/integrates the sequence of observed constraint violations

infeasible

feasible

38

largest multiplier value “overshoots”  λ*



What we are looking for

Shortcomings of GDA 
‣ GDA may result in overshoot and oscillations (Gidel et al. 2019; Stooke at al. 2020) 
‣ Especially problematic in safety-related applications

Goal and scope 
‣ Reliable and robust approach for solving Lagrangian optimization problems 
‣ That does not modify training “recipe” for primal variables

Achieving this goal enables wider adoption of Lagrangian optimization in deep learning!

Gidel, G., Askari, R., Pezeshki, M., LePriol, R., Huang, G., Lacoste-Julien, S., and Mitliagkas, I. Negative Momentum for Improved Game Dynamics. In AISTATS, 2019. 
Stooke, A., Achiam, J., and Abbeel, P. Responsive Safety in Reinforcement Learning by PID Lagrangian Methods. In ICML, 2020.
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Dynamical system’s view of CO
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min
x

f(x) subject to g(x) ≤ 0 and h(x) = 0

plug-in your favourite 
primal optimizer choice

constraint violation is the 
error signal for the controller

ensure non-negativity of 
inequality multipliers

multipliers “tilt” the primal gradient  
 ∇f (x*) + ∑m

i=1 λ*i ∇gi(x*) + ∑n
i=1 μ*i ∇hi(x*)



PI control for constrained optimizationν
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Algorithm: PI update on parameter  

Args: EMA coefficient , proportional ( ) and 

integral ( ) gains; initial conditions  and  

1. Measure the current system error  

2.    (for ) 

3.

ν θ

ν κp

κi ξ0 θ0

et

ξt ← νξt−1 + (1 − ν)et t ≥ 1

θt+1 ← θ0 + κpξt + κi ∑
t
τ=0 eτ

Recursively, θ1 ← θ0 + κpξ0 + κie0

θt+1 ← θt + κiet + κp (ξt − ξt−1)
General case

θt+1 ← θt + κiet + κp (et − et−1)
Case ν = 0

like -ascent∇
new term looks at 

change in constraint 
satisfaction!



PI generalizes momentum methodsν
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Theorem 
Under the same initialization , UnifiedMomentum( , , ) is a special case of 

the PI algorithm with the hyperparameter choices: 

θ0 α β ≠ 1 γ
ν

ν ← β ξ0 ← (1 − β)e0

κi ←
α

1 − β κp ← −
αβ

(1 − β)2
[1 − γ(1 − β)]

Polyak ; Nesterov  γ = 0 γ = 1

Shen, L., Chen, C., Zou, F., Jie, Z., Sun, J., and Liu, W. A. Unified Analysis of AdaGrad with Weighted Aggregation and Momentum Acceleration. In IEEE 
TNNLS, 2018.



PI generalizes momentum methodsν
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SV
M

 ta
sk

Of all attempted optimizers*, only PI converged successfully to the true solution!ν

*Showing best hyperparameters for each optimizer after grid-search aiming to minimize the distance to  after 5.000 iterations  λ*
44



Robustness

45

Higher values of  allow for 
choosing larger values of  

(multiplier step-size) and over 
a wider range, while still 
achieving convergence.

κp

κi
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PI provides additional flexibility compared to Polyak and 
Nesterov which is crucial for achieving convergence in this task. 

ν



Revisiting L -constrained problem0
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min
θ̃,ϕ

𝔼z | ϕ [L𝒟 (θ̃ ⊙ z)] subject to
𝔼z | ϕ [∥z∥0]

#(θ)
≤ ϵ

PI delivers stable multiplier dynamics without constraint overshootν



Impact on performance

48

PI achieves high accuracy 
and tightly respects the 

constraints, without 
overshooting 

ν



Contribution V



Cooper:  
A Library for Constrained Optimization  

in Deep Learning

Juan Ramirez Simon Lacoste-JulienJose Gallego-Posada

JMLR MLOSS 2024 (under submission)

Meraj Hashemizadeh



a general-purpose, deep learning-first 
library for constrained optimization, 

built on PyTorch.

Cooper

51



Cooper’s class overview
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‣ constraint_type: 
ConstraintType 

‣ multiplier: Multiplier 
‣ formulation_type: 
Formulation 

‣ penalty_coefficient: 
PenaltyCoefficient 

Constraint

‣ violation: Tensor 
‣ constraint_features: 
Tensor 

‣ contributes_to_(primal
/dual)_update: bool

ConstraintState‣ constraint_type: 
ConstraintType 

‣ weight: Tensor 
‣ grad: Tensor

Multiplier

‣ forward()  Tensor 
‣ post_step_()

→

‣ cmp: ConstrainedMinProblem 
‣ primal_optimizers:  
list[torch.optim.Optimizer] 

‣ dual_optimizers:  
list[torch.optim.Optimizer]

ConstrainedOptimizer

‣ primal_step() 
‣ dual_step() 
‣ roll()  RollOut→

‣ _constraints: 
dict[str, Constraint]

ConstrainedMinProblem

‣ compute_cmp_state()  
CMPState

→

‣ loss: Tensor 
‣ observed_constraints:  
dict[Constraint, 
ConstraintState] 

‣ misc: dict

CMPState

‣ compute_(primal/dual) 
_lagrangian() 
LagrangianStore

→

Cotter et al. TensorFlow Constrained Optimization (TFCO).



Conclusions & 
Perspectives



Constrained optimization is an  
up-and-coming research direction 

54

▸As ML becomes a “technology”, ensuring compliance with government regulations 

and industry standards is crucial next-step 

▸Constrained optimization is a rich field, ripe for integration by ML community 

▸Socially impactful research; inter-disciplinary relevance



Main challenges when solving  
constrained problems in machine learning 
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▸Optimization dynamics 

▸Non-differentiable constraints (“proxy-constraints” from Cotter et al. (2019)) 

▸Generalization properties for loss and constraints   

▸Feasibility: always? if not, how fast?



(Some) Open questions
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▸How to deal with constraints that are difficult to quantify? 

▸Why do GDA-like schemes work in practical Lagrangian problems? 

▸What is the role of overparametrization in constrained optimization?  

▸How can we improve the Lagrange multipliers further? 

▸How can we make constrained techniques usable “during inference”? 

▸What is next for Cooper?



Thank you!


