

Today's agenda

‣Why constrained optimization?

- ‣Foundations of constrained optimization
- ‣Three core papers
- ‣Conclusions and perspectives

"If I had been rich, I probably would not have devoted myself to mathematics."

Collaborators

Collaborators

Simon Lacoste-Julien Golnoosh Farnadi Yoshua Bengio

Controlled Sparsity via Constrained Optimization *Gallego-Posada, Ramirez, Erraqabi, Bengio, Lacoste-Julien NeurIPS 2022*

Balancing Act: Constraining Disparate Impact in Sparse Models *Hashemizadeh*, Ramirez*, Sukumaran, Farnadi, Lacoste-Julien, Gallego-Posada ICLR 2024*

On PI controllers for updating Lagrange multipliers in constrained optimization *Sohrabi*, Ramirez*, Zhang, Lacoste-Julien, Gallego-Posada ICML 2024*

Cooper: A Library for Constrained Optimization in Deep Learning *Gallego-Posada*, Ramirez*, Hashemizadeh, Lacoste-Julien JMLR MLOSS 2024 (under submission)*

L0onie: Compressing COINs with L0-constraints *Ramirez, Gallego-Posada* Sparsity in Neural Networks Workshop 2022*

GAIT: A Geometric Approach to Information Theory *Gallego-Posada, Vani, Schwarzer, Lacoste-Julien AISTATS 2020*

Equivariant Mesh Attention Networks *Basu*, Gallego-Posada*, Vigano*, Rowbottom*, Cohen TMLR 2022*

AI & Cities: Risks, Applications and Governance *Koseki, Jameson et al. Tech Report - Mila and UN-Habitat 2022*

A Distributed Data-Parallel PyTorch Implementation of the Distributed Shampoo Optimizer for Training Neural Networks At-Scale *Shi, Lee, Iwasaki, Gallego-Posada, Li, Rangadurai, Mudigere, Rabbat Tech Report 2024*

Widespread deployment of powerful machine learning models has resulted in mounting pressures to enhance the robustness, safety and fairness of such models—often arising from regulatory and ethical considerations

"Build now, fix later"

- ▸ Inability to guarantee compliance with industry standards and governmental regulations limits implementation of ML solutions in real-world applications
- ▸ Retro-fitting safety measures as afterthoughts!
- ▶ Continuous incurrence of technical debt hinders long-term progress of the field

Secure by design

- ▸ We advocate for a paradigm shift in which constraints are an integral part of the model development process
- ▶ Constrained optimization offers a rich conceptual framework accompanied by algorithmic tools for reliably enforce complex properties on ML models

Recent **works on CO for ML**

- ▸ Fairness: Zafar et al. (2017); Cotter et al. (2019); Hashemizadeh et al. (2024)
- ▸ Safe reinforcement learning: Stooke et al. (2020)
- ▸ Sparse neural network training: Gallego-Posada et al. (2022)
- ▸ Active learning: Elenter et al. (2022)
- ▸ Model quantization: Hounie et al. (2023)
- ▸ Dynamics of constrained learning: Sohrabi et al. (2024)
- ▸ Safe RLHF: Dai et ail. (2024)

Formulation Formulation

 \bigcirc

 \bigodot

Algorithm

Formulation ▸Controllability **▸**Hyperparameter interpretability **▸**Better exploration of trade-offs **▸**Experimental accountability

Algorithm ▸Functional representation

▸Game structure

of the problem

 \bigcap

Formulation Problem ▸Learning dynamics **▸**Computational cost **▸**Convergence guarantees **▸**Practical robustness

Formulation
 **Formulation ▶ Two axis for generalization

★ How fast to become feasibl

How fast to improve the los ▸**Feasibility reigns **▸**How fast to become feasible? How fast to improve the loss?

Constrained optimization

minimize $f(x)$ *x* subject to $g(x) \leq 0_m$ and $h(x) = 0_n$

Feasible set $\Omega = \left\{ x \in \mathbb{R}^p \mid g(x) \leq 0 \text{ and } h(x) = 0 \right\}$

Optimality condition (necessary) If *x** is a local minimum of *f* over Ω, then $\nabla f(x^*)^\top z \geq 0 \quad \forall z \in \text{FD}(x^*)$

constrained

*feasible directions at x**

Feasibility and accountability

Although in the unconstrained setting ★ would be preferred, not valid solution for constrained problem since it is infeasible.

Choosing the constraint level beforehand ensures experimental accountability.

"not allowed to cheat"

usually informed by problem-dependent requirements

Why not just penalize?

minimize *x* $f(x) + \lambda_{pen} g(x)$

Tuning $\lambda_{\sf pen}$ typically requires a trial-and-error search!

tunable hyperparameter

In non-convex problems, there may be

trade-offs between the objective and

constraints that are not reachable using a penalized formulation.

Lagrangian problem

$$
\min_{x} f(x)
$$
\nsubject to $g(x) \le 0_m$ and $h(x) = 0_n$ \Leftrightarrow $\min_{x} \max_{\lambda \ge 0, \mu} g(x)$

$\mathcal{L}(x, \lambda, \mu) \triangleq f(x) + \lambda^{\top} g(x) + \mu^{\top} h(x)$ Lagrangian

Role of the multipliers (cf. Karush-Kuhn-Tucker necessary conditions) $\nabla f(x^*) + \sum_{i=1}^m$ $\sum_{i=1}^{m} \lambda_i^* \nabla g_i(x^*) + \sum_{i=1}^{n}$ $\sum_{i=1}^{n} \mu_i^* \nabla h_i(x^*) = 0$

"Lagrange multipliers" or "dual variables"

Algorithmic approach

Saddle points of the Lagrangian correspond to constrained optima, but may not exist. Find a min-max point!

Gradient Descent-Ascent (GDA)

Lagrangian min max $\Omega(x, \lambda, \mu) \triangleq f(x) + \lambda^\top g(x) + \mu^\top h(x)$ *x λ*≥**0**, *μ*

Algorithm

 $\textsf{Initialize } x_0, \, \lambda_0 = \bm{0} \text{ and } \bm{\mu}_0 = \bm{0}$

Repeat

If convergence check satisfied; stop $\mu_{k+1} \leftarrow \mu_k + \eta_{\text{dual}} \nabla_\mu \mathfrak{L}(x_k, \lambda_k, \mu_k) = \mu_k + \eta_{\text{dual}} h(x_k)$ *maintains non-negativity* $\boldsymbol{\lambda}_{k+1} \leftarrow \left[\boldsymbol{\lambda}_k + \eta_{\text{dual}} \nabla_{\lambda} \mathcal{L}(\boldsymbol{x}_k, \boldsymbol{\lambda}_k, \boldsymbol{\mu}_k)\right]$ + $= \left[\lambda_k + \eta_{\text{dual}} g(x_k)\right]$ $x_{k+1} \leftarrow x_k - \eta_{\text{primal}} \nabla_x \mathfrak{L}(x_k, \lambda_k, \mu_k)$

+

projected gradient ascent of inequality multipliers

Gradient Descent-Ascent (GDA)

$$
\mu_{k+1} \leftarrow \mu_k + \eta_{\text{dual}} \nabla_{\mu} \mathcal{L}(x_k, \lambda_k, \mu_k)
$$

$$
\lambda_{k+1} \leftarrow [\lambda_k + \eta_{\text{dual}} \nabla_{\lambda} \mathcal{L}(x_k, \lambda_k, \mu_k)]
$$

$$
x_{k+1} \leftarrow x_k - \eta_{\text{primal}} \nabla_{x} \mathcal{L}(x_k, \lambda_k, \mu_k)
$$

Extensibility

Negligible computational overhead

Compared to the penalized approach: only need to update value of the multipliers.

 $\left[\boldsymbol{l}_k\right)\right]^+$

Simplest possible first-order strategy. Can be combined with more sophisticated updates.

pick your favourite primal optimizer!

Dynamics of GDA

$$
\lambda_{k+1} = \left[\lambda_k + \eta_{\text{dual}} \nabla_{\lambda} \mathfrak{L}(x_k, \lambda_k, \mu_k)\right]^+ = \left[\lambda_k - \eta_{\text{dual}}\right]^+
$$

The multiplier accumulates the sequence of observed constraint violations.

Controlled Sparsity via Constrained Optimization *How I Learned to Stop Tuning Penalties & Love Constraints*

Jose Gallego-Posada Juan Ramirez Akram Erraqabi Yoshua Bengio Simon Lacoste-Julien

NeurIPS 2022

(We originally wanted to write a paper on constrained optimization. The result was a "case study" on the use of constrained optimization for training sparse neural networks.)

Sparsity via L0 **regularization**

Challenges with *λ*pen

- \blacktriangleright Strength of the regularization is mediated by coefficient $\lambda_{\sf pen}$.
- \blacktriangleright Tuning $\lambda_{\sf pen}$ to achieve a pre-determined sparsity level is expensive.

Louizos et al. (2018) introduced a stochastic, differentiable reparametrization $\theta = \tilde{\theta} \odot z$ for training sparse neural networks

$$
\min_{\tilde{\theta},\phi} \mathbb{E}_{z|\phi} \left[L_{\mathcal{D}} \left(\tilde{\theta} \odot z \right) \right] + \lambda_{\text{pen}} \mathbb{E}_{z|z}
$$

${\boldsymbol{\mathsf{L}}}_0$ reparametrization

stochastic binary gates

Instead of penalizing, formulate sparsity goals as L -norm constraints and solve the Lagrangian min-max problem 0

✔ Interpretable hyperparameter semantics: target sparsity level \vee Reliable control over the model sparsity

$$
\min_{\tilde{\theta},\phi} \mathbb{E}_{z|\phi} \left[L_{\mathcal{D}} \left(\tilde{\theta} \odot z \right) \right] \text{ subject to}
$$

subject to
$$
\frac{\mathbb{E}_{z|\phi} \left[\lVert z \rVert_0 \right]}{\#(\theta)} \leq \epsilon
$$

Contributions

- ▸ Proposed a constrained approach for learning models with controllable levels of sparsity, highlighting its benefits with respect to the popular penalized approach ▸ Introduced a heuristic called *"dual restarts"* to avoid excessive sparsity caused by
	- accumulation of constraint violations in the multipliers
	- ▸ Through simple experimental adjustments, we managed to successfully train sparse (Wide)ResNets — prior experimental studies had failed at this!
- ▸ Demonstrated that we can reliably achieve controllable sparsity levels across many different architectures and datasets — without compromising performance

Dual Restarts

Motivation of dual restarts as a "conditional" best response The game-theoretic best response of the dual player to a primal action $(\ddot{\theta}, \phi)$ is:

$$
\lambda_{\text{CO}}^{\text{BR}}(\tilde{\boldsymbol{\theta}}, \boldsymbol{\phi}) = \underset{\lambda_{\text{CO}} \geq 0}{\text{argmax}} \ \mathfrak{L}(\tilde{\boldsymbol{\theta}}, \boldsymbol{\phi}, \lambda_{\text{CO}}) = \underset{\lambda_{\text{CO}} \geq 0}{\text{argmax}} \ f(\tilde{\boldsymbol{\theta}}, \boldsymbol{\phi}) + \lambda_{\text{CO}}^{\text{T}} \left(g(\boldsymbol{\phi}) - \epsilon \right)
$$

This is a linear program whose solution depends purely on the feasibility of $(\ddot{\theta}, \phi)$:

$$
\lambda_{\text{CO}}^{\text{BR}}(\tilde{\theta}, \phi) = \begin{cases} \infty & \text{if } g(\phi) > \epsilon \\ \mathbb{R}^+ & \text{if } g(\phi) = \epsilon \\ 0 & \text{if } g(\phi) < \epsilon \end{cases}
$$

When using GDA, the multipliers can be excessively large, even at a feasible primal iterate.

Training Dynamics

Dual Restarts No Dual Restarts First Feasibility **31**

Achieving controlled sparsity

Dataset: Tiny-ImageNet Model: ResNet18

Achieving controlled sparsity

Dataset: Tiny-ImageNet Model: ResNet18

Achieving controlled sparsity

Dataset: Tiny-ImageNet Model: ResNet18

… while retaining performance!

On PI controllers for updating Lagrange multipliers in constrained optimization

ICML 2024

Juan Ramirez Tianyue H. Zhang Simon Lacoste-Julien Jose Gallego-Posada

Motahareh Sohrabi

Dynamics of GDA

$$
\lambda_{k+1} = \left[\lambda_k + \eta_{\text{dual}} \nabla_{\lambda} \mathfrak{L}(\mathbf{x}_k, \lambda_k, \boldsymbol{\mu}_k)\right]^+ = \left[\lambda_k - \eta_{\text{dual}}\right]^+
$$

$= \left[\lambda_k + \eta_{\text{dual}} g(x_k)\right]$ +

The multiplier accumulates/*integrates* the sequence of observed constraint violations

What we are looking for

Shortcomings of GDA

- ‣ Reliable and robust approach for solving Lagrangian optimization problems
- That does not modify training "recipe" for primal variables
- ‣ GDA may result in overshoot and oscillations (Gidel et al. 2019; Stooke at al. 2020)
- ‣ Especially problematic in safety-related applications

Goal and scope

Achieving this goal enables wider adoption of Lagrangian optimization in deep learning!

Gidel, G., Askari, R., Pezeshki, M., LePriol, R., Huang, G., Lacoste-Julien, S., and Mitliagkas, I. *Negative Momentum for Improved Game Dynamics.* In AISTATS, 2019. Stooke, A., Achiam, J., and Abbeel, P. *Responsive Safety in Reinforcement Learning by PID Lagrangian Methods*. In ICML, 2020.

Dynamical system's view of CO

*ν***PI control for constrained optimization**

Algorithm: ν PI update on parameter $\bm{\theta}$

Args: EMA coefficient ν , proportional (κ_p) and integral (κ_{i}) gains; initial conditions $\boldsymbol{\xi}_{0}$ and $\boldsymbol{\theta}_{0}$

1. Measure the current system error *et*

2. ξ_t ← $\nu \xi_{t-1} + (1 - \nu) e_t$ (for $t \ge 1$) 3. $\theta_{t+1} \leftarrow \theta_0 + \kappa_p \xi_t + \kappa_i \sum_{\tau=0}^t e_{\tau}$

 $Recu$ ^{*l*}

 $\boldsymbol{\theta}_t$

 lik

rsively,
$$
\theta_1 \leftarrow \theta_0 + \kappa_p \xi_0 + \kappa_i e_0
$$

$$
{+1} \leftarrow \boldsymbol{\theta}{t} + \kappa_{i} \boldsymbol{e}_{t} + \kappa_{p} \left(\boldsymbol{\xi}_{t} - \boldsymbol{\xi}_{t-1} \right)
$$

General case

\n
$$
\text{like } \nabla \text{-ascent}
$$
\n

\n\n $\theta_{t+1} \leftarrow \theta_t + \kappa_i e_t + \kappa_p \left(e_t - e_{t-1} \right)$ \n

\n\n $\text{Case } \nu = 0$ \n

\n\n $\text{Case } \nu = 0$ \n

*ν***PI generalizes momentum methods**

Theorem Under the same initialization $\boldsymbol{\theta}_0$, UnifiedMomentum(α , $\beta \neq 1$, γ) is a special case of the ν PI algorithm with the hyperparameter choices: *Polyak γ* = 0*; Nesterov γ* = 1

$$
\nu \leftarrow \beta \qquad \qquad \xi_0 \leftarrow (1 - \beta)e_0
$$
\n
$$
\kappa \leftarrow \frac{\alpha}{\mu} \qquad \qquad \kappa \leftarrow -\frac{\alpha \beta}{\mu} [1 - \beta] \qquad \qquad \zeta = \frac{\alpha \beta}{\mu}
$$

$$
\kappa_i \leftarrow \frac{\alpha}{1-\beta} \qquad \kappa_p \leftarrow -\frac{\alpha\beta}{(1-\beta)^2} [1-\gamma(1-\beta)]
$$

$(1 - \beta)$]

*ν***PI generalizes momentum methods**

Of all attempted optimizers^{*}, only vPI converged successfully to the true solution!

*Showing best hyperparameters for each optimizer after grid-search aiming to minimize the distance to *λ** after 5.000 iterations

SVM task SVM task

$$
\nu \text{PI } \kappa_p = 70, \, \kappa_i = 1.1
$$

44

Robustness

Higher values of κ_p allow for choosing larger values of *κi*(multiplier step-size) and over a wider range, while still achieving convergence.

- Polyak β = -0.5
- Polyak β = 0.7 $- - -$
- GA \cdots and \cdots .
	- $GA + Dual$ Restarts
	- ν PI $\kappa_p = 1$

$$
-\nu PI \kappa_p = 10
$$

$$
\leftarrow \nu \text{PI } \kappa_p = 70
$$

Adam

PI provides additional flexibility compared to Polyak and *ν*Nesterov which is crucial for achieving convergence in this task.

Revisiting L0**-constrained problem**

$$
\min_{\tilde{\theta},\phi} \mathbb{E}_{z|\phi} \left[L_{\mathscr{D}} \left(\tilde{\theta} \odot z \right) \right] \quad \text{subject to } \frac{\mathbb{E}_{z|\phi} \left[\Vert z \Vert_0 \right]}{\#\theta}
$$

$$
\frac{\phi\left[\|z\|_0\right]}{\#(\theta)} \leq \epsilon
$$

*ν*PI delivers stable multiplier dynamics without constraint overshoot

Impact on performance

PI achieves high accuracy *ν*and tightly respects the constraints, without overshooting

Cooper: A Library for Constrained Optimization in Deep Learning

JMLR MLOSS 2024 *(under submission)*

Jose Gallego-Posada Juan Ramirez Meraj Hashemizadeh Simon Lacoste-Julien

a general-purpose, deep learning-first library for constrained optimization, built on PyTorch.

Cooper's class overview

Cotter et al. *TensorFlow Constrained Optimization (TFCO).*

Constrained optimization is an up-and-coming research direction

- ▸As ML becomes a "technology", ensuring compliance with government regulations and industry standards is crucial next-step
- ▸ Constrained optimization is a rich field, ripe for integration by ML community
- ▸ Socially impactful research; inter-disciplinary relevance

Main challenges when solving constrained problems in machine learning

- ▸ Optimization dynamics
- ▸ Non-differentiable constraints (*"proxy-constraints"* from Cotter et al. (2019))
- ▶ Generalization properties for loss and constraints
- ▸ Feasibility: always? if not, how fast?

(Some) Open questions

- ▸ How to deal with constraints that are difficult to quantify?
- ▸ Why do GDA-like schemes work in practical Lagrangian problems?
- ▸ What is the role of overparametrization in constrained optimization?
- ▸ How can we improve the Lagrange multipliers further?
- ▸ How can we make constrained techniques usable "during inference"?
- ▸ What is next for Cooper?

Thank you!

 $\left(-\right)$

