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•Why DPPs?

•Definition and properties

•Sampling

•Applications
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Bible for DPP in ML:

Foundations and Trends in Machine Learning 

Determinantal Point Processes for Machine Learning

Alex Kulesza and Ben Taskar (2012) [link]

Presentation based on slides by :

• Simon Barthelmé, Nicolas Tremblay, EUSIPCO19 [link]

• Alex Kulesza, Ben Taskar and Jennifer Gillenwater – CVPR13 [link]
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http://www.alexkulesza.com/pubs/dpps_fnt12.pdf
http://www.gipsa-lab.fr/~nicolas.tremblay/files/DPP_tutorial.pdf
https://www.cc.gatech.edu/~dbatra/cvpr13diversitytutorial/slides/05_dpp_tut_cvpr_alex_kulesza.pdf
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Guillaume Gautier, Rémi Bardenet, Guillermo Polito, Michal Valko

https://github.com/jgalle29/dpp_slides



BioDiversity
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[BT19, dpp_demo]

https://github.com/jgalle29/dpp_slides/blob/main/dpp_demo.ipynb


Variance reduction – Mean estimation
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IID Samples
[BT19, dpp_demo]

https://github.com/jgalle29/dpp_slides/blob/main/dpp_demo.ipynb


Variance reduction – Mean estimation
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DPP Samples
[BT19, dpp_demo]

https://github.com/jgalle29/dpp_slides/blob/main/dpp_demo.ipynb
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Variance reduction – Mean estimation

[BT19, dpp_demo]

https://github.com/jgalle29/dpp_slides/blob/main/dpp_demo.ipynb


Determinantal

Base set 𝒴= {1,… , 𝑛} from which we sample a random subset 𝒀.

𝒀 is distributed according to a point process 𝒫 over 2𝒴.

𝒫 𝒀 = 𝑌 depends on the determinant of a 

matrix selected based on the elements of 𝑌.

Point Process
7



Poisson Process
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• Simplest point process… too simple!

• Element memberships are parameterized by independent Bernoulli rvs.

• Special case of a DPP with marginal kernel 𝔎 = 𝐷𝒑.

𝒫 𝒀 = 𝑌 = ෑ

𝑖∈𝑌

𝑝𝑖 ෑ

𝑖∉𝑌

(1 − 𝑝𝑖)



Desiderata:

i. Density is tractable; including normalization constant

ii. Inclusion probabilities (marginals) are tractable

iii. Sampling is tractable

iv. Model is easy to understand

Representing repulsion

Contrary to most Gibbs processes (normalized, exponentiated potentials), 

DPPs tick all the boxes 9
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Loopy, negative 
interactions are hard

(Inference becomes 
intractable; worst case)

Global, negative 
interactions are easy
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[KTG13]



𝔏-ensembles

• Model repulsion based on similarity between elements of 𝒴.

• Similarity between elements 𝑖 and 𝑗 is stored in 𝔏𝑖𝑗.

• We assume 𝔏 to be positive definite.

• 𝔏 is known as the likelihood kernel.

We say that 𝒀 is distributed according to a DPP if:

𝒫 𝒀 = 𝑌 ∝ det 𝔏𝑌
11
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Where did the repulsion go?

𝒫 𝒀 = 𝑌 ∝ det 𝔏𝑌 = det 2 𝔅𝑌

𝔅1

𝔅2

𝔏𝑌 = [𝔅𝑇𝔅]𝑌

𝔏{1,2,4} =

Embedding of 𝒴
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Where did the repulsion go?

𝒫 𝑖, 𝑗 ∝ 𝒫 𝑖 𝒫 𝑗 −
𝔏𝑖𝑗

det(𝔏 + 𝕀)

2

Vol 𝔅𝑖 = det 𝔅

[KTG13]

𝔅1

𝔅2



14

Where did the repulsion go?

𝔏𝑌

Probability under a DPP grows with the spanned volume
[BT19, dpp_demo]

https://github.com/jgalle29/dpp_slides/blob/main/dpp_demo.ipynb


15

Normalization


𝐴⊂𝑌⊂𝒴

det 𝔏𝑌 = det 𝔏 + 𝕀 ҧ𝐴

Analytic normalization 

constant!
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Exploit linear-algebraic 
properties to make 

inference/sampling easy
(or feasible in high-dims)



17

Marginal kernels

• Consider a DPP with L-ensemble 𝔏.

• The inclusion (marginal) probability that 𝒀 contains a set 𝑆 is given by:

with 𝔎 = 𝔏 𝔏 + 𝕀 −1.

• 𝔎 is known as the marginal kernel of the DPP.

• 𝒫 𝑖 ∈ 𝒀 = 𝔎𝑖𝑖.

• 𝔼 𝒀 = 𝔼 σ𝑖 𝟙𝑖∈𝒀 = σ𝑖𝒫 𝑖 ∈ 𝒀 = tr 𝔎.

𝒫 𝑆 ⊂ 𝒀 =
1

𝔖


𝑆⊂𝑌

det 𝔏𝑌 = det 𝔎𝑆
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Conditioning

𝒫 𝐵 ⊂ 𝒀 |𝐴 ⊂ 𝒀 =
𝒫 𝐴 ∪ 𝐵 ⊂ 𝒀

𝒫 𝐴 ⊂ 𝒀
=
det 𝔎𝐴∪𝐵
det 𝔎𝐴

= det 𝔎𝐵 − 𝔎𝐵𝐴𝔎𝐴
−1𝔎𝐴𝐵

𝔎𝐴∪𝐵 =
𝔎𝐵

𝔎𝐴

𝔎𝐵𝐴

𝔎𝐴𝐵

det 𝔎𝐴∪𝐵 = det 𝔎𝐴 det 𝔎𝐵 − 𝔎𝐵𝐴𝔎𝐴
−1𝔎𝐴𝐵

Schur complement

DPPs are closed under conditioning!
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Complexity?

• Evaluation of 𝔏 - 𝒪 𝑛2

• Normalization constant - 𝒪 𝑛3 [determinant]

• Marginal probabilities - 𝒪 𝑛3 [matrix inversion]

• Conditional probabilities - 𝒪 𝑛3 [Schur complement]



Questions?

Brahms 7-8
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Extensions

Conditional

𝑘-

Structured
DPPs

Non-symmetric
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𝑘-DPPs

• In practical applications, often preferred to limit cardinality of the set

• Search results

• Minibatch selection

• Summarization

• Normalization constant σ 𝒀 =𝑘 det 𝔏𝑌 = 𝑒𝑘 𝜆1, … , 𝜆𝑁 [𝑘-th elementary sym. polynomial]

• Special case: 1-DPP

• Need not have a corresponding marginal kernel

𝒫 𝒀 = 𝑌 ∝ det 𝔏𝑌 𝟏 𝒀 =𝑘
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Elementary 𝜋-DPPs 

• Special case: 𝑘-DPP with 𝑘 = rank 𝔏 and 𝔏 = 𝑉𝛬𝑉𝑇, has marginal kernel 𝔎 = 𝑉𝑉𝑇

• A DPP is called elementary if the spectrum of its marginal kernel is 0, 1 .

• We denote this process as 𝒫𝑉.

• If 𝒀 ∼ 𝒫𝑉, then 𝒀 = 𝑉 with probability one. ( 𝒀 is a sum  of Bernoulli rvs.)

• 𝔎 is a projection matrix – also called projection DPPs

𝔎𝑉 = σ𝓿∈𝑉𝓿𝓿
𝑇
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Hierarchy of DPPs

Strongly Rayleigh

𝑘-DPPs

DPPs

𝔏-ensembles

𝜋
-D
P
Ps
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Cauchy-Binet Lemma

𝐹𝑛 =
φ𝑛 − 𝜓𝑛

φ − 𝜓

JPM Binet

• Consider matrices 𝐴 of size 𝑟 × 𝑠 and 𝐵 of size 𝑠 × 𝑟

• For each 𝑟-subset 𝑌 ⊂ [1,… , 𝑟], construct square matrices 𝐴:𝑌 and 𝐵𝑌:

det 𝐴𝐵 = σ 𝒀 =𝑟 det 𝐴:𝑌 det 𝐵𝑌:

[Proof]

https://www.math.brown.edu/reschwar/M123/cauchy.pdf
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DPPs as mixture models

𝒫 𝒀 = 𝑌 ∝ det 𝔏𝑌 = det 𝑉𝛬𝑉 𝑌

= det 𝑉𝑌: 𝛬 𝛬 𝑉:𝑌

= 

𝑍 = 𝑌

det 𝑉𝑌𝑍 𝛬𝑍𝑍 det 𝛬𝑍𝑍𝑉𝑍𝑌

= 

𝑍 = 𝑌

det 𝑉𝑌𝑍𝑉𝑌𝑍
𝑇 det 𝛬𝑍𝑍

Elementary 

DPP

Diagonal 

𝔏-ensemble
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Sampling

𝒫 ∝ 

𝐽⊂𝒴

𝒫𝑉𝐽 ෑ

𝑛∈𝐽

𝜆𝑛 = 

𝐽⊂𝒴

𝒫𝑉𝐽 det 𝑽𝐽

• Consider a DPP with L-ensemble 𝔏 = σ𝑛 𝜆𝑛𝓿𝑛𝓿𝑛
𝑇 .  

• For each subset 𝐽 ⊂ 𝒴, let 𝑉𝐽 denote the set 𝓿𝑛 𝑛∈𝐽 and the elementary DPP 𝒫𝑉𝐽 . 

Factorize the original DPP as a 

mixture of elementary DPPs
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Sampling via spectral decomposition

by sequential exploiting closure 

of DPPs under conditioningPr 𝐽 ∝ෑ

𝑛∈𝐽

𝜆𝑛

STAGE ONE STAGE TWO

Draw a sample from 𝒫𝐽
Choose elementary DPP 𝒫𝐽

based on mixture weight

[KT12 – p.145]
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Sampling in action

[KT12]
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Advanced sampling

• Spectral method for sampling has cost 𝒪 𝑛2 + 𝑛3 + 𝑛𝑘2

• Dual sampling: instead of using 𝔏 = 𝔅𝑇𝔅 with 𝔅 𝑑 × 𝑛 use ℭ = 𝔅𝔅𝑇 [KT12§3.3]

• Random projections

• Nyström approximations: Low rank approximation [Li, Jegelka, Sra 16a]

• MCMC sampling [LJS16b]

• Add, remove, swap

• Prove fast mixing for chains in terms of total variation

• Distortion-free intermediate sampling [Derezinski 18; CDV20]

• Suitably construct an intermediate subset 𝜎 and then subsample from it

http://proceedings.mlr.press/v48/lih16.pdf
https://arxiv.org/pdf/1608.01008.pdf
https://arxiv.org/pdf/1811.03717.pdf
https://papers.nips.cc/paper/2020/file/4d410063822cd9be28f86701c0bc3a31-Paper.pdf
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Learning DPPs

• Basic setting: Maximum Likelihood

• Given 𝑌𝑡 𝑡=1
𝑇 subsets of 𝒴. Parameterize 𝔏-ensemble as 𝔏 𝜃

argmax
𝜃

logෑ

𝑡

𝒫𝜃 𝑌𝑡 =

𝑡

log det 𝔏𝑌𝑡(𝜃) − log det(𝔏 𝜃 + 𝕀)

• Can use gradient-based methods for optimizing 𝜃

• Can be extended to conditioning on a covariate 𝑋: 𝔏 𝜃, 𝑋

• For each 𝑋 we have a DPP

• 𝑋 may be a query during search on which we want to condition the distribution over results 

• See [KT12§4] for more details
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Applications

Image search

{Relevance vs Diversity}
Extractive summarization

[KT12]
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Applications

• (Quasi) Monte-Carlo integration (Gautier et al., On two ways to use DPPs for Monte Carlo integration, 2019) 

• Mini-batch sampling for SGD (Zhang et al., DPPs for Mini-Batch Diversification, 2017)

• Coresets (Tremblay et al., DPPs for Coresets, 2018) 



33

DPPs in Randomized LinAlg

𝑤∗ = argmin
𝑤

𝑿𝑤 − 𝑦 2 = 𝑿†𝑦

• Consider a linear regression problem with a tall, full-rank matrix 𝑿 ∈ ℝ𝑛×𝑑 with 𝑛 ≫ 𝑑

• Sketching: approximating matrix ෩𝑿 (subset of rows, low-rank)

• Usual bounds have (𝜀,𝛿)-PAC flavour

• If 𝑆 ∼ 𝑑-DPP(𝑿𝑿𝑇), then 𝔼[𝑿𝑆:
−1𝑦] = 𝑤∗ [leverage scores]

• If 𝑆 ∼DPP
1

𝜆
𝑿𝑿𝑇 , then 𝔼[𝑿𝑆:

† 𝑦] = argmin
𝑤

𝑿𝑤 − 𝑦 2 + 𝜆 𝑤 2 [ridge l.s.]

[DM20]

https://arxiv.org/abs/2005.03185
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Minibatch sampling for LinReg

• Previously we related sampling with properties of analytic solution

• What is the influence of non-iid sampling during stochastic optimization?

• Previous work by [Zhang, Kjellström, Mandt 17] for variance reduction

• Toy example: linear model

• Gradients are ‘constant’ and correspond to points

• Redundant points lead to redundant sampled gradients

• Sample minibatches 𝑆 ∼ 𝑑-DPP 𝑿𝑿𝑇 and run SGD with momentum

https://arxiv.org/pdf/1705.00607.pdf
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Minibatch sampling for LinReg

𝒅-DPP

IID

Train Test

𝜂 = 1 × 10−1 𝜂 = 2.5 × 10−1 𝜂 = 3.5 × 10−1 𝜂 = 4 × 10−1

[optim_demo]

https://github.com/jgalle29/dpp_slides/blob/main/dpp_demo.ipynb
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Overparameterized regime

𝒌-DPP

IID

Train

[optim_demo]

https://github.com/jgalle29/dpp_slides/blob/main/dpp_demo.ipynb
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Determinantal Point Processes

are elegant, efficient and useful

models of repulsion


