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https://github.com/facebookresearch/optimizers/tree/main/distributed_shampoo

Check out our open-source implementation:



Main contributions

Characterization of 
Distributed Shampoo 

Open-source 

PyTorch Implementation

Experimental evidence 

in large models

• Complete algorithmic 
characterization, 
consolidating insights from 
recent literature


• Including LR grafting and 
other as well as important 
deep learning heuristics

Performance optimizations 
required to ensure Shampoo 
is competitive in terms of 

wall-clock time compared to 
popular diagonal adaptive 
methods like Adagrad/Adam

• Corroborating Shampoo’s 
improvement in convergence 
and model quality w.r.t. 
benchmark training recipes


• On ImageNet task with 
ResNet50 models, Shampoo 
yields a 1.35x improvement 
in wall-clock time
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Shampoo 
bottle

W (1) ∈ ℝ3×5×5×64 W (2) ∈ ℝ64×3×3×64 W (3) ∈ ℝ512×1000

h(x; w) = softmax(W(l)σ(W(n−1)σ(… σ(W(1)x) … )))

w = (vec (W (1))⊤, …, vec (W (l))⊤)
⊤

∈ ℝdTrainable parameters:
Modules are 
composable  

and differentiable

Modern architectures typically comprise between a few million to 100x billion parameters/variables!



Neural network training

• Large number of training samples, requiring the use of stochastic approximations


• Unlike traditional optimization, true goal is generalization to unseen examples


• DL optimization practice is dominated by adaptive first-order methods (like SGD+momentum, 
Adam, Adagrad)


• In the DL setting, complex optimization methods require engineering work to achieve performant 
implementations


• Training faster is ideal as it allows to saves money and energy

{(xi, yi)}N
i=1 = {ξi}N

i=1 ∼ 𝒟

Data

h(x; w) ↦ ̂y

Model

ℓ( ̂y, y)

Loss function

fξ(w) = ℓ(h(x; w), y)

Sampled function



Preconditioned gradient methods

Pk = UpdatePreconditioner(Pk−1, gk)
wk+1 = wk − αk Pk gk

Generic PG Method

Three core streams of work amongst the vast literature:


• Newton and quasi-Newton methods  L-BFGS; K-BFGS


• Natural gradient  KFAC


• Adaptive gradient methods


• Most traction in DL practice


• Widespread use of methods like Adagrad/Adam(W)


• Strong pragmatic component behind our focus on this branch 

⇒

⇒



Adaptive Gradient (Adagrad) Methods

wk+1,1
wk+1,2

⋮
wk+1,n

=

wk,1
wk,2

⋮
wk,n

− αk

vk,1 0 ⋱ 0
0 vk,2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … vk,n

−1/2
gk,1
gk,2

⋮
gk,n

Initialize v0 = 0. Then:

vk = vk−1 + g2
k

wk+1 = wk − αk
gk

vk




We implement Adagrad with element-wise operations (easy!)

Let us consider the online case where gk = ∇fk(wk).

Diagonal Adagrad

More generally, we can understand Adagrad as a PG method with , wherePk = A−1/2
k

Duchi et al. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. JMLR’11

This update rule is equivalent to using a diagonal scaling:

Ak =
∑k

t=0 diag(g2
t ) if diagonal Adagrad

∑k
t=0 gtg⊤

t if full-matrix Adagrad (FMA)

Does not capture 
gradient correlations



Shampoo Algorithm

Gupta et al. Shampoo: Preconditioned Stochastic Tensor Optimization. ICML’18

Diagonal Adagrad Full-matrix Adagrad (FMA)Shampoo

Preconditioner for 
parameter W (1)w⊤ = (vec (W (1))⊤, …, vec (W (n))⊤)

vec( W
(1))

vec( W
(2))

vec( W
(3))

Shampoo leverages two key approximations:


• Block-diagonal approximation to FMA; allows capturing weight correlations while reducing cost


• Kronecker product approximation to block-level preconditioner; exploits tensor structure in NN parameters  

= L(1)
k ⊗ R(1)

k



Memory/computation spectrum of Adagrad-like methods

Consider applying an adaptive gradient method to a parameter matrix .W ∈ ℝm×n

Identity




No memory

No computation

Ak = 𝕀

Diagonal Adagrad




 memory

 computation

Ak = ∑
t≤k

diag(g2
t )

O(mn)
O(mn)

Full-matrix Adagrad




  memory

 computation

Ak = ∑
t≤k

gtg⊤
t

O(m2n2)
O(m3n3)

Shampoo


 memory

 computation

O(m2 + n2)
O(m3 + n3)

Row-wise Adagrad, 
Adafactor, SM3row


 memory

 computation

O(m + n)
O(mn)



Shampoo (for matrices)
Initialize L0 = 0 ∈ ℝm×m and R0 = 0 ∈ ℝn×n.

Lk = Lk−1 + GkG⊤
k

Rk = Rk−1 + G⊤
k Gk

Wk+1 = Wk − αkL−1/4
k GkR−1/4

k

Shampoo can be applied to tensors of arbitrary order. 

Shampoo (Matrix)

L ∈ ℝm×m

R ∈ ℝn×n

W ∈ ℝm×n

Note that  and  are positive semi-definite square matrices.Lk Rk

G0 G⊤
0 G1 G⊤

1Lk = + + …

Rk = + + …
G0G⊤

0 G1G⊤
1

We need to invert and store  and  matrices, but never an   matrix! m × m n × n mn × mn

For simplicity, let us focus on a single fully-connected layer (without 
bias) with parameter matrix  and gradient .W ∈ ℝm×n G ∈ ℝm×n

Gupta et al. Shampoo: Preconditioned Stochastic Tensor Optimization. ICML’18



Two points of view

Wk+1 = Wk − αk L−1/4
k Gk R−1/4

k

Implementation POV

vec(Wk+1) = vec(Wk) − αk (L1/2
k ⊗ R⊤/2

k )−1/2 vec(Gk)

Theory POV

The mixed Kronecker matrix-vector product property yields:

Thus, we can interpret the Shampoo update as a Kronecker-factored block-diagonal preconditioner.

W (1)
k+1

W (2)
k+1
⋮

W (l)
k+1

wk+1

=

W (1)
k

W (2)
k
⋮

W (l)
k

wk

− αk

(L(1)
k )1/2 ⊗ (R(1)

k )⊤/2 0 ⋯ 0

0 (L(2)
k )1/2 ⊗ (R(2)

k )⊤/2 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ (L(l)

k )1/2 ⊗ (R(l)
k )⊤/2

−1/2

A−1/2
k

G(1)
k

G(2)
k
⋮

G(l)
k

gk



Layer-wise LR grafting

• Problem: While Shampoo offers a good preconditioner for each layer, how do we “scale” or 
“equalize” the different blocks?


• (Heuristic) Answer: Layer-wise learning rate grafting 


• Key idea: Use per-layer update size from base (aka grafted) optimizer


• This is a key ingredient to make Shampoo work in practice.

uk,Shampoo = ApplyPreconditioner(Lk, Rk, gk)

uk,Grafted = GraftingUpdate(gk)

Wk+1 = Wk − αk | |uk,Grafted | |F

uk,Shampoo
| |uk,Shampoo | |F

LR Grafting

Agarwal et al. Disentangling Adaptive Gradient Methods from Learning Rates. arXiv’20



321

Performance optimizations

• Model parameters are replicated across workers


• Each worker only computes a local subset of gradients


• Global mini-batch gradient is aggregated across workers


• Optimizer update is then carried out at each worker 

(Standard) Distributed Data-Parallel Training

Shampoo update is more 
complex — matrix ops. 

Naive replication would be 
sub-optimal!

Multi-GPU training allows 
to accelerate training 

over large datasets  

Distributed preconditioner 
storage and computation

Handling tensors of 

large dimensions

Periodic root-inverse 
computation



ImageNet dataset

• 1M+ labelled examples

• 1k classes

Image classification experiments

Deng et al. ImageNet: A Large-Scale Hierarchical Image Database. CVPR’09

ResNet50 model

• ~25M parameters

• Convolutional architecture

• Residual connections

• Batch-normalization layers

Experimental ablations

• Max. preconditioner dimension

• Preconditioner update 

frequency

• Restricted number of epochs

• Sensitivity to learning rate

See full details in paper!



Image classification experiments Both methods train for 90 epochs



Image classification experiments

Shampoo exhibits 
better early-stage 

generalization

Both methods train for 90 epochsSlight final-iterate 
improvement



Image classification experiments Shampoo overhead is 
competitive at ~10%

Both methods train for 90 epochs



Image classification experiments

Validation accuracy 
achieved by Nesterov 

after 90 training epochs

Shampoo can achieve the 
performance of Nesterov 

in 1.35x fewer hours, 
despite applying more 

complex updates



Conclusion

https://github.com/facebookresearch/optimizers/tree/main/distributed_shampoo
Well-engineered open-source implementation of Distributed Shampoo

1

Our experiments corroborate improvements over popular baselines2

Open questions on making heuristics like grafting rigorous 3

4
Full implementation and usage details available on preprint 
https://arxiv.org/abs/2309.06497




