
Distributed Data-Parallel Training  
of Neural Networks At-Scale  
Using Distributed Shampoo

Jose Gallego-Posada

Meta, Mila and University of Montreal 
September 27, 2023

https://github.com/facebookresearch/optimizers/tree/main/distributed_shampoo

Check out our open-source implementation:

Main contributions

Characterization of
Distributed Shampoo

Open-source

PyTorch Implementation

Experimental evidence

in large models

• Complete algorithmic
characterization,
consolidating insights from
recent literature

• Including LR grafting and
other as well as important
deep learning heuristics

Performance optimizations
required to ensure Shampoo
is competitive in terms of

wall-clock time compared to
popular diagonal adaptive
methods like Adagrad/Adam

• Corroborating Shampoo’s
improvement in convergence
and model quality w.r.t.
benchmark training recipes

• On ImageNet task with
ResNet50 models, Shampoo
yields a 1.35x improvement
in wall-clock time

Collaborators

Hao-Jun Michael Shi Tsung-Hsien Lee Shintaro Iwasaki

Zhijing Li Kaushik Rangadurai Dheevatsa Mudigere Mike Rabbat

Acknowledgements to Vineet Gupta and Rohan Anil (and collaborators) for their algorithmic contributions in
the original development of Shampoo.

Deep neural networks in one slide

Deep neural networks in one slide

Shampoo
bottle

Deep neural networks in one slide

Shampoo
bottle

Modules are
composable  

and differentiable

Deep neural networks in one slide

Shampoo
bottleh(x; w) = softmax(W(l)σ(W(n−1)σ(… σ(W(1)x) …)))

Modules are
composable  

and differentiable

Deep neural networks in one slide

Shampoo
bottle

W (1) ∈ ℝ3×5×5×64 W (2) ∈ ℝ64×3×3×64 W (3) ∈ ℝ512×1000

h(x; w) = softmax(W(l)σ(W(n−1)σ(… σ(W(1)x) …)))

w = (vec (W (1))⊤, …, vec (W (l))⊤)
⊤

∈ ℝdTrainable parameters:
Modules are
composable  

and differentiable

Deep neural networks in one slide

Shampoo
bottle

W (1) ∈ ℝ3×5×5×64 W (2) ∈ ℝ64×3×3×64 W (3) ∈ ℝ512×1000

h(x; w) = softmax(W(l)σ(W(n−1)σ(… σ(W(1)x) …)))

w = (vec (W (1))⊤, …, vec (W (l))⊤)
⊤

∈ ℝdTrainable parameters:
Modules are
composable  

and differentiable

Modern architectures typically comprise between a few million to 100x billion parameters/variables!

Neural network training

• Large number of training samples, requiring the use of stochastic approximations

• Unlike traditional optimization, true goal is generalization to unseen examples

• DL optimization practice is dominated by adaptive first-order methods (like SGD+momentum,
Adam, Adagrad)

• In the DL setting, complex optimization methods require engineering work to achieve performant
implementations

• Training faster is ideal as it allows to saves money and energy

{(xi, yi)}N
i=1 = {ξi}N

i=1 ∼ 𝒟

Data

h(x; w) ↦ ̂y

Model

ℓ(̂y, y)

Loss function

fξ(w) = ℓ(h(x; w), y)

Sampled function

Preconditioned gradient methods

Pk = UpdatePreconditioner(Pk−1, gk)
wk+1 = wk − αk Pk gk

Generic PG Method

Three core streams of work amongst the vast literature:

• Newton and quasi-Newton methods L-BFGS; K-BFGS

• Natural gradient KFAC

• Adaptive gradient methods

• Most traction in DL practice

• Widespread use of methods like Adagrad/Adam(W)

• Strong pragmatic component behind our focus on this branch

⇒

⇒

Adaptive Gradient (Adagrad) Methods

wk+1,1
wk+1,2

⋮
wk+1,n

=

wk,1
wk,2

⋮
wk,n

− αk

vk,1 0 ⋱ 0
0 vk,2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … vk,n

−1/2
gk,1
gk,2

⋮
gk,n

Initialize v0 = 0. Then:

vk = vk−1 + g2
k

wk+1 = wk − αk
gk

vk

We implement Adagrad with element-wise operations (easy!)

Let us consider the online case where gk = ∇fk(wk).

Diagonal Adagrad

More generally, we can understand Adagrad as a PG method with , wherePk = A−1/2
k

Duchi et al. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. JMLR’11

This update rule is equivalent to using a diagonal scaling:

Ak =
∑k

t=0 diag(g2
t) if diagonal Adagrad

∑k
t=0 gtg⊤

t if full-matrix Adagrad (FMA)

Does not capture
gradient correlations

Shampoo Algorithm

Gupta et al. Shampoo: Preconditioned Stochastic Tensor Optimization. ICML’18

Diagonal Adagrad Full-matrix Adagrad (FMA)Shampoo

Preconditioner for
parameter W (1)w⊤ = (vec (W (1))⊤, …, vec (W (n))⊤)

vec(W
(1))

vec(W
(2))

vec(W
(3))

Shampoo leverages two key approximations:

• Block-diagonal approximation to FMA; allows capturing weight correlations while reducing cost

• Kronecker product approximation to block-level preconditioner; exploits tensor structure in NN parameters

= L(1)
k ⊗ R(1)

k

Memory/computation spectrum of Adagrad-like methods

Consider applying an adaptive gradient method to a parameter matrix .W ∈ ℝm×n

Identity

No memory

No computation

Ak = 𝕀

Diagonal Adagrad

 memory

 computation

Ak = ∑
t≤k

diag(g2
t)

O(mn)
O(mn)

Full-matrix Adagrad

 memory

 computation

Ak = ∑
t≤k

gtg⊤
t

O(m2n2)
O(m3n3)

Shampoo

 memory

 computation

O(m2 + n2)
O(m3 + n3)

Row-wise Adagrad,
Adafactor, SM3row

 memory

 computation

O(m + n)
O(mn)

Shampoo (for matrices)
Initialize L0 = 0 ∈ ℝm×m and R0 = 0 ∈ ℝn×n.

Lk = Lk−1 + GkG⊤
k

Rk = Rk−1 + G⊤
k Gk

Wk+1 = Wk − αkL−1/4
k GkR−1/4

k

Shampoo can be applied to tensors of arbitrary order.

Shampoo (Matrix)

L ∈ ℝm×m

R ∈ ℝn×n

W ∈ ℝm×n

Note that and are positive semi-definite square matrices.Lk Rk

G0 G⊤
0 G1 G⊤

1Lk = + + …

Rk = + + …
G0G⊤

0 G1G⊤
1

We need to invert and store and matrices, but never an matrix! m × m n × n mn × mn

For simplicity, let us focus on a single fully-connected layer (without
bias) with parameter matrix and gradient .W ∈ ℝm×n G ∈ ℝm×n

Gupta et al. Shampoo: Preconditioned Stochastic Tensor Optimization. ICML’18

Two points of view

Wk+1 = Wk − αk L−1/4
k Gk R−1/4

k

Implementation POV

vec(Wk+1) = vec(Wk) − αk (L1/2
k ⊗ R⊤/2

k)−1/2 vec(Gk)

Theory POV

The mixed Kronecker matrix-vector product property yields:

Thus, we can interpret the Shampoo update as a Kronecker-factored block-diagonal preconditioner.

W (1)
k+1

W (2)
k+1
⋮

W (l)
k+1

wk+1

=

W (1)
k

W (2)
k
⋮

W (l)
k

wk

− αk

(L(1)
k)1/2 ⊗ (R(1)

k)⊤/2 0 ⋯ 0

0 (L(2)
k)1/2 ⊗ (R(2)

k)⊤/2 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ (L(l)

k)1/2 ⊗ (R(l)
k)⊤/2

−1/2

A−1/2
k

G(1)
k

G(2)
k
⋮

G(l)
k

gk

Layer-wise LR grafting

• Problem: While Shampoo offers a good preconditioner for each layer, how do we “scale” or
“equalize” the different blocks?

• (Heuristic) Answer: Layer-wise learning rate grafting

• Key idea: Use per-layer update size from base (aka grafted) optimizer

• This is a key ingredient to make Shampoo work in practice.

uk,Shampoo = ApplyPreconditioner(Lk, Rk, gk)

uk,Grafted = GraftingUpdate(gk)

Wk+1 = Wk − αk | |uk,Grafted | |F

uk,Shampoo
| |uk,Shampoo | |F

LR Grafting

Agarwal et al. Disentangling Adaptive Gradient Methods from Learning Rates. arXiv’20

321

Performance optimizations

• Model parameters are replicated across workers

• Each worker only computes a local subset of gradients

• Global mini-batch gradient is aggregated across workers

• Optimizer update is then carried out at each worker

(Standard) Distributed Data-Parallel Training

Shampoo update is more
complex — matrix ops.

Naive replication would be
sub-optimal!

Multi-GPU training allows
to accelerate training

over large datasets

Distributed preconditioner
storage and computation

Handling tensors of

large dimensions

Periodic root-inverse
computation

ImageNet dataset

• 1M+ labelled examples

• 1k classes

Image classification experiments

Deng et al. ImageNet: A Large-Scale Hierarchical Image Database. CVPR’09

ResNet50 model

• ~25M parameters

• Convolutional architecture

• Residual connections

• Batch-normalization layers

Experimental ablations

• Max. preconditioner dimension

• Preconditioner update

frequency

• Restricted number of epochs

• Sensitivity to learning rate

See full details in paper!

Image classification experiments Both methods train for 90 epochs

Image classification experiments

Shampoo exhibits
better early-stage

generalization

Both methods train for 90 epochsSlight final-iterate
improvement

Image classification experiments Shampoo overhead is
competitive at ~10%

Both methods train for 90 epochs

Image classification experiments

Validation accuracy
achieved by Nesterov

after 90 training epochs

Shampoo can achieve the
performance of Nesterov

in 1.35x fewer hours,
despite applying more

complex updates

Conclusion

https://github.com/facebookresearch/optimizers/tree/main/distributed_shampoo
Well-engineered open-source implementation of Distributed Shampoo

1

Our experiments corroborate improvements over popular baselines2

Open questions on making heuristics like grafting rigorous 3

4
Full implementation and usage details available on preprint
https://arxiv.org/abs/2309.06497

