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Résumé

Le déploiement généralisé de modèles d’apprentissage automatique de plus en plus per-
formants a entraîné des pressions croissantes pour améliorer la robustesse, la sécurité et
l’équité de ces modèles—souvent en raison de considérations réglementaires et éthiques.
En outre, la mise en œuvre de solutions d’intelligence artificielle dans des applications
réelles est limitée par leur incapacité actuelle à garantir la conformité aux normes indus-
trielles et aux réglementations gouvernementales. Les pipelines standards pour le déve-
loppement demodèles d’apprentissage automatique adoptent unementalité de “construire
maintenant, réparer plus tard”, intégrant des mesures de sécurité a posteriori. Cette ac-
cumulation continue de dette technique entrave le progrès du domaine à long terme.

L’optimisation sous contraintes offre un cadre conceptuel accompagné d’outils algo-
rithmiques permettant d’imposer demanière fiable des propriétés complexes sur desmo-
dèles d’apprentissage automatique. Cette thèse appelle à un changement de paradigme
dans lequel les contraintes constituent une partie intégrante du processus de développe-
ment des modèles, visant à produire des modèles d’apprentissage automatique qui sont
intrinsèquement sécurisés par conception.

Cette thèse offre une perspective holistique sur l’usage de l’optimisation sous contraintes
dans les tâches d’apprentissage profond. Nous examinerons i) la nécessité de formu-
lations contraintes, ii) les avantages offerts par le point de vue de l’optimisation sous
contraintes et iii) les défis algorithmiques qui surgissent dans la résolution de ces pro-
blèmes. Nous présentons plusieurs études de cas illustrant l’application des techniques
d’optimisation sous contraintes à des problèmes courants d’apprentissage automatique.

E 8 e

Dans la Contribution i, nous plaidons en faveur de l’utilisation des formulations
sous contraintes en apprentissage automatique. Nous soutenons qu’il est préférable de gé-
rer des régularisateurs interprétables via des contraintes explicites plutôt que par des pé-
nalités additives, particulièrement lorsqu’il s’agit de modèles non convexes. Nous consi-
dérons l’entraînement de modèles creux avec une régularisation L0 et démontrons que
i) il est possible de trouver des solutions réalisables et performantes à des problèmes de
grande envergure avec des contraintes non convexes ; et que ii) l’approche contrainte peut
éviter les coûteux ajustements par essais et erreurs inhérents aux techniques basées sur
les pénalités.

LaContribution ii approfondit la contributionprécédente en imposant des contraintes
explicites sur le taux de compression atteint par les ReprésentationsNeuronales Implicites—
une classe demodèles visant à entreposer efficacement des données (telles qu’une image)
dans les paramètres d’un réseau neuronal. Dans ce travail, nous nous concentrons sur
l’interaction entre la taille du modèle, sa capacité représentationnelle et le temps d’en-
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traînement requis. Plutôt que de restreindre la taille du modèle à un budget fixe (qui
se conforme au taux de compression requis), nous entraînons un modèle surparamétré
et creux avec des contraintes de taux de compression. Cela nous permet d’exploiter la
puissance de modèles plus grands pour obtenir de meilleures reconstructions, plus rapi-
dement, sans avoir à nous engager à leur taux de compression indésirable.

La Contribution iii présente les avantages des formulations sous contraintes dans
une application réaliste de la parcimonie des modèles avec des contraintes liées à l’équité
non différentiables. Les performances des réseaux neuronaux élagués se dégradent de
manière inégale entre les sous-groupes de données, nécessitant ainsi l’utilisation de tech-
niques d’atténuation.Nous proposons une formulation qui impose des contraintes sur les
changements de précision du modèle dans chaque sous-groupe, contrairement aux tra-
vaux antérieurs qui considèrent des contraintes basées sur des métriques de substitution
(telles que la perte du sous-groupe). Nous abordons les défis de la non-différentiabilité
et de la stochasticité posés par nos contraintes proposées, et démontrons que notre mé-
thode s’adapte de manière fiable aux problèmes d’optimisation impliquant de grands mo-
dèles et des centaines de sous-groupes.

Dans la Contribution iv, nous nous concentrons sur la dynamique de l’optimisation
lagrangienne basée sur le gradient, une technique populaire pour résoudre les problèmes
sous contraintes non convexes en apprentissage profond. La nature adversariale du jeu
min-max lagrangien le rend sujet à des comportements oscillatoires ou instables. En
nous basant sur des idées tirées de la littérature sur les régulateur PID, nous proposons
un algorithme pour modifier les multiplicateurs de Lagrange qui offre une dynamique
d’entraînement robuste et stable. Cette contribution met en place les bases pour que les
praticiens adoptent et mettent en œuvre des approches sous contraintes avec confiance
dans diverses applications réelles.

Dans la Contribution v, nous fournissons un aperçu de Cooper : une bibliothèque
pour l’optimisation sous contraintes basée sur le lagrangien dans PyTorch. Cette biblio-
thèque open-source implémente toutes les contributions principales présentées dans les
chapitres précédents et s’intègre harmonieusement dans le cadre PyTorch. Nous avons
développé Cooper dans le but de rendre les techniques d’optimisation sous contraintes
facilement accessibles aux chercheurs et praticiens de l’apprentissage automatique.
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Abstract

The widespread deployment of increasingly capable machine learning models has re-
sulted in mounting pressures to enhance the robustness, safety and fairness of such
models—often arising from regulatory and ethical considerations. Further, the imple-
mentation of artificial intelligence solutions in real-world applications is limited by their
current inability to guarantee compliancewith industry standards and governmental reg-
ulations. Current standard pipelines for developing machine learning models embrace
a “build now, fix later” mentality, retrofitting safety measures as afterthoughts. This con-
tinuous incurrence of technical debt hinders the progress of the field in the long-term.

Constrained optimization offers a conceptual framework accompanied by algorithmic
tools for reliably enforcing complex properties on machine learning models. This thesis
calls for a paradigm shift in which constraints constitute an integral part of the model
development process, aiming to produce machine learning models that are inherently
secure by design.

This thesis provides a holistic perspective on the use of constrained optimization in
deep learning tasks. We shall explore i) the need for constrained formulations, ii) the
advantages afforded by the constrained optimization standpoint and iii) the algorithmic
challenges arising in the solution of such problems. We present several case-studies il-
lustrating the application of constrained optimization techniques to popular machine
learning problems.
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In Contribution i, we advocate for the use of constrained formulations in machine
learning. We argue that it is preferable to handle interpretable regularizers via explicit
constraints, rather than using additive penalties, speciallywhen dealingwith non-convex
models. We consider the training of sparse models with L0-regularization and demon-
strate that i) it is possible to find feasible, well-performing solutions to large-scale prob-
lems with non-convex constraints; and that ii) the constrained approach can avoid the
costly trial-and-error tuning inherent to penalty-based techniques.

Contribution ii expands on the previous contribution by imposing explicit con-
straints on the compression-rate achieved by Implicit Neural Representations—a class
of models that aim to efficiently store data (such as an image) within a neural network’s
parameters. In this work we concentrate on the interplay between themodel size, its rep-
resentational capacity and the required training time. Rather than restricting the model
size to a fixed budget (that complies with the required compression rate), we train an
overparametrized, sparse model with compression-rate constraints. This allows us to ex-
ploit the power of larger models to achieve better reconstructions, faster; without having
to commit to their undesirable compression rate.
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Contribution iii showcases the advantages of constrained formulations in a realis-
tic model sparsity application with non-differentiable fairness-related constraints. The
performance of pruned neural networks degrades unevenly across data sub-groups, thus
requiring the use of mitigation techniques. We propose a formulation that imposes con-
straints on changes in the model accuracy in each sub-group, in contrast to prior work
which considers constraints based on surrogatemetrics (such as the sub-group loss). We
address the non-differentiability and stochasticity challenges posed by our proposed con-
straints, and demonstrate that our method scales reliably to optimization problems in-
volving large models and hundreds of sub-groups.

In Contribution iv, we focus on the dynamics of gradient-based Lagrangian opti-
mization, a popular technique for solving the non-convex constrained problems arising
in deep learning. The adversarial nature of themin-maxLagrangian gamemakes it prone
to oscillatory or unstable behaviors. Based on ideas from the PID control literature, we
propose an algorithm for updating the Lagrange multipliers which yields robust, stable
training dynamics. This contribution lays the groundwork for practitioners to adopt and
implement constrained approaches confidently in diverse real-world applications.

In Contribution v, we provide an overview of Cooper: a library for Lagrangian-
based constrained optimization in PyTorch. This open-source library implements all the
core contributions presented in the preceding chapters and integrates seamlesslywith the
PyTorch framework. We developed Cooper with the goal of making constrained opti-
mization techniques readily available to machine learning researchers and practitioners.
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Keywords: machine learning, optimization, constrained optimization, Lagrangian
optimization, min-max optimization, gradient-based optimization, deep learning, neu-
ral networks, sparsemodels, PID control, fairness, open-source software, PyTorch, Cooper.
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Ithaka

As you set out for Ithaka
hope the voyage is a long one,
full of adventure, full of discovery.
Laistrygonians and Cyclops,
angry Poseidon—don’t be afraid of them:
you’ll never find things like that on your way
as long as you keep your thoughts raised high,
as long as a rare excitement
stirs your spirit and your body.
Laistrygonians and Cyclops,
wild Poseidon—you won’t encounter them
unless you bring them along inside your soul,
unless your soul sets them up in front of you.
Hope the voyage is a long one.
May there be many a summer morning when,
with what pleasure, what joy,
you come into harbors seen for the first time;
may you stop at Phoenician trading stations
to buy fine things,
mother of pearl and coral, amber and ebony,
sensual perfume of every kind—
as many sensual perfumes as you can;
and may you visit many Egyptian cities
to gather stores of knowledge from their scholars.
Keep Ithaka always in your mind.
Arriving there is what you are destined for.
But do not hurry the journey at all.
Better if it lasts for years,
so you are old by the time you reach the island,
wealthy with all you have gained on the way,
not expecting Ithaka to make you rich.
Ithaka gave you the marvelous journey.
Without her you would not have set out.
She has nothing left to give you now.
And if you find her poor, Ithaka won’t have fooled you.
Wise as you will have become, so full of experience,
you will have understood by then what these Ithakas mean.
— C. P. Cavafy

C. P. Cavafy, “Ithaka” from C.P. Cavafy: Collected Poems. (1975)

Translated by Edmund Keeley and Philip Sherrard. Reproduced with permission of Princeton University Press.
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1Introduction

On September 16th, 1987, representatives of 46 countries* signed the Montreal Proto- * The Montreal Protocol
eventually became the first
treaty to achieve universal
ratification.

col on Substances that Deplete the Ozone Layer [Uni87]. This landmark† international

† Former UN Secretary-
General Kofi Annan called
it “perhaps the single most
successful international
agreement” [Uni12].

treaty aimed to protect the Earth’s ozone layer by phasing out the production and use
of chlorofluorocarbons (CFCs), a family of ozone-depleting substances widely used as
refrigerants and aerosol propellants.

Prior to the 1920s, refrigeration systems used toxic or flammable gases such as ammo-
nia, sulfur dioxide, or methyl chloride. In 1928, aiming to address these safety concerns,
Thomas Midgley Jr., an American chemical engineer at Kinetic Chemicals,‡ developed ‡ A partnership founded by

General Motors and
chemical company DuPont.

dichlorodifluoromethane (commonly known as R-12), the first CFC refrigerant.

R-12 not only solved the safety issues of previous refrigerants, being non-toxic and
non-flammable—it also enjoyed excellent thermodynamic properties, including a low
boiling point and a constant temperature across a wide range of pressures, which made
it suitable for various cooling applications [MH30]. R-12’s efficiency as a refrigerant con-
tributed to its widespread adoption throughout the 20th century. Midgley§ was awarded § Of prior controversy for

his role in the development
of leaded gasoline.

the Priestley Medal in 1941 by the American Chemical Society.

As is often the case with influential technologies, the entire spectrum of consequences
of CFCs was not fully understood at the time of their invention. By 1925, chemists had
identified ozone, established its molecular structure, and recognized its role in the ab-
sorption of ultraviolet light in the stratosphere. However, it was not until 1930¶ that a ¶ After Midgley’s discovery!
theory by Chapman [Cha30] posited the existence of an atmospherical ozone layer.

The following decades witnessed, paradoxically, rapid expansion of the CFCs market
alongside intense scientific research on the ozone layer. This included the work of Paul
Crutzen, Mario Molina, and Sherwood Rowland during the 1970s, concerning the for-
mation and decomposition of ozone in the stratosphere�. Research efforts culminated � For which they were

awarded the 1995 Nobel
Prize in Chemistry.

with the discovery of the Antarctic ozone hole in 1985 by British Antarctic Survey scien-
tists [FGS85], and the subsequent realization that CFCs were responsible for the deple-
tion of the ozone layer, ultimately leading to the signing of the Montreal Protocol.

The Montreal Protocol has resulted in a significant reduction in the production and
use of ozone-depleting substances, and has contributed to the recovery of the ozone layer.
The treaty’s success has been attributed to the cooperation between governments, indus-
try, and civil society in addressing a global environmental challenge.

R-12 has been replaced by R-134a, a hydrofluorocarbon (HFC)** with lower ozone ** HFCs are potent
greenhouse gases, and their
use is being phased out
under the Kigali
Amendment to the
Montreal Protocol.

depletion potential and improved cooling efficiency [CSP92]. Our search for more envi-
ronmentally friendly refrigerants—a regulatory constraint—illustrates how responsible
innovation can be a catalyst for developing all-around superior technologies.
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Constrained Optimization for Machine Learning

Artificial Intelligence (AI) holds great promise for protecting human rights, promot-
ing social justice, and fostering sustainable economic prosperity. However, achieving
these seemingly utopian goals requires concerted international efforts to regulate and
incentivize the responsible development and deployment of AI technologies.

AI is already a disruptive innovation in many sectors, including healthcare, finance,
transportation, and advertising. AI systems are being used to discover drug candidates,
predict financialmarkets, optimize supply chains, andpersonalize advertising campaigns.
The rapid adoption of AI technologies has been powered by unprecedented progress in
computer vision, natural language processing, and reinforcement learning.

While AI is poised to revolutionize many fields, the implementation of AI solutions
in real-world applications is limited by their current inability to guarantee compliance
with governmental regulations, industry standards, or other safety guidelines. As a result,
besides a widespread deployment of increasingly capable machine learning models, the
last few years†† have also beenmarked bymounting pressures to enhance the robustness,†† The International Organi-

zation for Standardization
released the ISO/IEC42001

standard in December 2023,
providing guidelines for the

responsible development, de-
ployment, and governance

of AI technologies.

safety, and fairness of such models. These pressures often stem from regulatory [Cou24]
or ethical [DAV18] considerations.

Current standard pipelines for developing machine learning models embrace a “build
now, fix later” mentality, retrofitting safety measures as afterthoughts. This thesis argues
that this continuous incurrence of technical debt hinders long-term progress in the field.

A pertinent contemporary example is the release and subsequent rollback of Google’s
AI Overviews inMay 2024 [Gra24]. AI Overviews are an enhancement to Google search,
integrating AI-generated summaries into search results to provide more comprehensive
and context-rich answers to user queries.

AI Overviews quickly faced backlash due to inaccurate answers. Infamously, when
asked “How many rocks should I eat[?]”, the search engine (incorrectly) responded “Ac-
cording to UC Berkeley geologists, you should eat at least one small rock per day”‡‡. As‡‡ The source for this answer

was later identified to be a
2021 article by satirical pub-

lisher The Onion [Oni21].

a result of this incident, Google issued a statement [Rei24] acknowledging the limita-
tions of AI Overviews and implementing “more than a dozen technical improvements” to
address said safety and reliability concerns. Build now, fix later.

This thesis advocates for a paradigm shift in which application-specific constraints
form an integral part of the model development process, aiming to produce machine
learning models that are inherently secure by design.

The scientists who developed R-12 could not have foreseen some of its environmen-
tal consequences. However, once the issue of ozone depletion was identified, this envi-
ronmental constraint was successfully integrated into the development process of new
generations of refrigerants.

Similarly, while AI still has many unknown unknowns§§, tangible fairness, privacy and§§ Sparking heated debates
on existential risk. safety risks have been identified [ST23]. However, in the absence of readily available

techniques for incorporating constraints during model development, improvements on
predictive performance are often prioritized over risk mitigation. The current (mis-) pri-
oritization results in the “unsustainable” development of technologies, which, despite ex-
cellent performance, may never reach deployment due to regulatory or ethical concerns.
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1 Introduction

This thesis proposes constrained optimization as away forward: constrained optimiza-
tion offers a solid conceptual framework, theoretical guarantees, and efficient algorith-
mic tools for reliably enforcing complex properties on machine learning models.

At a high level,¶¶ the constrained approach modifies the training of the model by in- ¶¶ These ideas are presented
formally in §2.2 and 2.3.corporating the constraints directly into the optimization problem. The optimization

procedure then “dynamically re-weights” the constraints in a way that induces themodel
to satisfy them, while still attempting to be optimal in terms of the training objective.

This dissertation is by no means the first work to consider the use of constraints in
machine learning. Support vector machines [CV95], constrained Markov decision pro-
cesses [Alt99], fairness-aware learning [Dwo+12], and adversarial training [GSS15] are
a few notable examples. The value of this thesis, however, lies in its holistic perspective
on the use of constrained optimization in modern machine learning. In the following
chapters, we shall expand on:

• the theoretical and algorithmic foundations of constrained optimization (§2),
• the advantages of constrained formulations in machine learning tasks, specially

when dealing with non-convex problems (§4),
• the algorithmic challenges arising during the solution of constrained optimization

problems (§4 and 10),
• empirical demonstrations of the success of constrained optimization in deep learn-

ing problems (§4, 6 and 8), and
• the development of open-source software to facilitate the application of constrained

optimization techniques in machine learning (§12).

overview of the contributions

Jose Gallego-Posada, Juan Ramirez, Akram Erraqabi, Yoshua Bengio, and Si-
mon Lacoste-Julien: Controlled Sparsity via Constrained Optimization or: How I
Learned to Stop Tuning Penalties and Love Constraints. In: NeurIPS. 2022. [Chap-
ters 3 and 4]

Penalized methods are widely used for inducing desired properties in machine learn-
ing models [GBC16, §5.2.2], with recent works on training generative models [Hig+17],
neural network sparsity [LWK18], self-supervised learning [BPL22] and fine-tuning of
large language models [Raf+23].

For generalization-enhancing regularization, the penalty coefficient is typically tuned
via cross-validation. On the other hand, when the penalties are used to induce other be-
haviors like sparsity, model alignment or preventing collapse of learned representations,
the penalty coefficient is usually tuned via a trial-and-error* process. * Adjusting the value on the

coefficient depending on
whether the penalty was too
strong or too weak.

An important shortcoming of penalized approaches in non-convex problems is that,
in general, they are unable to span the entire set of Pareto-optimal solutions [BV04,
§4.7.4].† In other words, there exist trade-offs between the objective and penalties that † Parameter configurations

for which neither the
objective or the penalty can
be improved without
worsening the other.

are not reachable by tuning the penalty coefficient. Therefore, protocols for training non-
convex models that rely exclusively on penalized approaches are susceptible to ignoring
important regions of the Pareto set.
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Constrained Optimization for Machine Learning

In this contribution, we take the work of Louizos et al. [LWK18] on training sparse
neural networks via L0 regularization as a case study to demonstrate the advantages that
constrained formulations can bring compared to the popular penalty-based techniques.
We formulate a constrained optimization problem inwhich the training loss of themodel
is minimized, subject to a constraint on the expected‡ L0-sparsity of the model.‡ Louizos et al. [LWK18]

propose a stochastic
reparametrization of the

neural network parameters
to circumvent the non-
differentiability of the

L0-“norm”.

In this work, we demonstrate i) that it is possible to successfully use constrained
optimization techniques for achieving well-performing, feasible solutions to sparsity-
constrained problems involving deep neural networks; and ii) that the controllability
benefits of the constrained formulation enable to drastically mitigate the costly trial-and-
error tuning of the penalty coefficient.

Additionally, we identify a challenge in the optimization dynamics of the multipliers.
It is often the case that model initializations do not satisfy the constraints and require
many parameter updates to reach feasibility. When solving the Lagrangian min-max
problemwith gradient-based updates, the historic constraint violations are accumulated
in the values of the Lagrange multipliers. The long initial period of infeasibility can re-
sult in multipliers of large magnitude by the time the model is close to satisfying the
constraints, thus pushing the model to overshoot towards the interior of the feasible set.

Constraint overshoot is undesirable since it can hinder the model performance. For
example, in the case of sparsity constraints, themodel performance is typically correlated
with the number of active parameters. Converging to a solution that ismuchmore sparse
than prescribed by the constraint can lead to a significant drop in performance.

Optimistically, one could hope that “training for long enough” may resolve the con-
straint overshoot. However, in non-convex problems, the optimization can get stuck in
feasible, yet poorly-performing localminima. Furthermore, “training for longer”may re-
quire re-engineering the training pipeline given thewidespread use of budget-dependent
training techniques, such as learning rate schedules.

To address the issue of constraint overshoot, we introduce the dual restarts technique:
reset the value of a multiplier to zero whenever its corresponding constraint is (strictly)
satisfied. While dual restarts are mainly heuristic in nature, they capture the intuition
that the historic accumulated violation is not necessarily indicative of the current feasi-
bility of the model. Dual restarts can be motivated in game-theoretic terms as a (partial)
best-response [LS22, §2.2] of the dual player. More importantly, our experiments show
that dual restarts are highly effective in eliminating overshoot in L0-sparsity constraints,
without leading to gross violation of the constraints.

Finally, as a result of a careful analysis of the learning dynamics, we propose two mod-
ifications to the training protocol used for training ResNet models with L0-sparsity con-
straints: i) increasing the learning rate of the stochastic gates, and ii) removing the con-
tribution of the weight decay term towards the gates. These two adjustments enable us
to train L0-sparse ResNets without ruining the model performance, a feat that had been
elusive to prior works [GEH19].

E 8 e

Juan Ramirez and Jose Gallego-Posada: L0onie: Compressing COINs with L0-
Constraints. In: Sparsity in Neural Networks Workshop. 2022. [Chapters 5 and 6].
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1 Introduction

Implicit Neural Representations (INRs) [Sit+20] are a family of data structures that
rely on neural networks to represent complex objects, such as images or 3D shapes. For
example, rather than storing an image as a grid of pixels, an INR consists of a neural
network representing the mapping between pixel locations and RGB values.

Dupont et al. [Dup+21] introduced COIN, a data-compression technique based on
INRs. Their encoding protocol works as follows: i) train an INR on the image to be
compressed, ii) quantize the model parameters, and iii) store the quantized parameters
as a code for the image. Reconstructing (part of) the image then amounts to querying
the model at the desired pixel locations.

Note that the compression rate§ of an INR is determined by the number of bits re- § In the case of images,
measured in “bits per pixel”.quired to store the quantizedmodel parameters. This leads to a natural trade-off between

the compression rate and the quality of the reconstructions: the bigger the model, the
better the reconstructions, but the worse the compression rate.

How could we get the benefits of a large model, without the cost in compression rate?
As a natural follow-up to the previous contribution, in L0onie ¶ we propose to train over- ¶ A nod to the colloquial

name of the Canadian
one-dollar coin.

parametrized, sparse models with compression-rate constraints. In other words, we take
advantage of the inherent redundancies in large models, and sparsify them during train-
ing in order to achieve a pre-specified minimum compression rate.

We highlight that the constraints used in this problem are more complex than those
in Contribution i. Rather than constraining the expected L0-sparsity of the model, we
impose constraints on the number of bits required to store the model parameters under
a binarization of the learned stochastic gates. The binarization ensures a fair assessment
of the compression rate, but also introduces non-differentiability in the constraints. We
employ the proxy-constraint� technique by Cotter et al. [Cot+19b] to address this issue. � Discussed further in §2.34.

L0onie enables the training of sparse INRs achieving better reconstructions, in less
wall-clock time, while respecting the desired compression rate, and dispensing of the
need for expensive architecture search.

E 8 e

Meraj Hashemizadeh, Juan Ramirez, Rohan Sukumaran, Golnoosh Farnadi,
Simon Lacoste-Julien, and Jose Gallego-Posada: Balancing Act: Constraining
Disparate Impact in Sparse Models. In: ICLR. 2024. [Chapters 7 and 8].

Pruning is a widely used approach to reduce the size of neural networks, making them
more efficient to deploy on resource-constrained devices. Popular pruning techniques
[ZG17] can achievemarginal loss of accuracy over the entire dataset at aggressive sparsity
levels [Bla+20]. However, the degradation** in performance can vary significantly across ** Compared to the dense

version of the model.data sub-groups [Hoo+19; Hoo+20; Pag20]. This fairness issue is known as the disparate
impact of pruning [Tra+22].

Existingmitigationmethods fall short in terms of their interpretability and their ability
to scale to large numbers of sub-groups. For example, Tran et al. [Tra+22] constrain the
model’s loss to be equal across sub-groups. However, this approach does not account for
the possibility of uneven performance in the original dense model. Furthermore, their
proposed constraints capture issue of disparate impact indirectly, as the loss is merely

7
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a surrogate for the model’s accuracy. In contrast, the fairness-aware pruning approach
of [LKJ22] decides which weights are removed based on importance scores computed
for every parameter and every sub-group. Clearly, as the model size or the number of
sub-groups increase, the computational cost of this technique becomes prohibitive.

In this contribution, we present a novel technique for mitigating pruning-induced
disparity. We propose a constrained formulation of the problem by imposing (non-
differentiable!) constraints that require the variation in the accuracy degradation across
sub-groups to be low, without resorting to the use of surrogate metrics. Moreover, the
proposed approach has a negligible computational overhead compared to naively fine-
tuning the sparse model.

Theuse of the proxy-constraint technique [Cot+19b] to address the non-differentiability
of the constraints†† was an important source of progress compared to prior works. Un-†† As in L0onie.
doubtedly, the change in accuracy on a given sub-group before and after pruning is a
central metric for determining whether said sub-group was disproportionately affected
by the pruning process. However, the differentiability challenges posed by the accuracy
may have deterred prior works from considering accuracy-based constraints explicitly.
In contrast, our problem formulation and proposed algorithmic approach directly aim
to limit the variations on the accuracy degradation across sub-groups.

We emphasize that the use of accuracy-based constraints enhances the interpretabil-
ity of the approach. For example, regulations or company policies may prescribe a max-
imum level of allowable disparity for a given application. Incorporating this problem
specification is substantially simpler‡‡ when the constraints are directly related to the‡‡ We demonstrate this

claim in our experiments by
changing the maximum

disparity level across
datasets.

model’s disparity, rather than being based on a surrogate metric like the loss.

Another key challenge in this work is the need to perform stochastic estimates of the
constraint violations. Unlike the two initial contributions, in which the constraints could
be evaluated in closed form, the constraints in this work involve computing expecta-
tions of the model’s accuracy over sub-groups of data. Given the scale of the models and
datasets we consider, the cost of computing the exact constraint violations would be pro-
hibitive, thus leading us to resort to mini-batch estimates of the constraints. However,
the inexact measurement of the constraints introduces noise in the update of the mul-
tipliers and model parameters. Inspired by the notion of replay buffers [Mni+13] used
in reinforcement learning, we introduce a variance reduction technique that leverages
model predictions on past mini-batches to estimate the constraints more reliably.

We empirically demonstrate the effectiveness of our approach for mitigating pruning-
induced disparity across a variety of datasets, model architectures and sparsity levels.
Notably, our technique scales seamlessly to tasks with hundreds of protected sub-groups.

Finally, while only our approach delivered reliable disparity mitigation on training
data, our experimental results indicate that all the methods we evaluated in this paper§§§§ Including ours!
fail to mitigate pruning-induced disparities on unseen data. Interestingly, our work was
the first to document this generalization challenge. At the writing of this dissertation,
achieving well-generalizing disparity mitigation remains an open problem in the field
of fairness-aware pruning. We hope our empirical observations will motivate further
research on this topic.

E 8 e
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1 Introduction

Motahareh Sohrabi, Juan Ramirez, TianyueH. Zhang, Simon Lacoste-Julien,
and Jose Gallego-Posada: On PI controllers for updating Lagrange multipliers in
constrained optimization. In: ICML. 2024. [Chapters 9 and 10].

Having established the benefits of constrained approaches in several applications, we
turn our attention to an important aspect of constrained optimization: the dynamics of
the optimization process itself.

As we anticipated in our discussion of Contribution i, the use of gradient-based up-
dates on the Lagrangian min-max problem can cause an excessive accumulation of the
constraint violations in the Lagrange multipliers, leading to constraint overshoot. Other
shortcomings of the gradient descent-ascent (GDA) scheme include instability, oscilla-
tions or slow convergence [PB87; Gid+19a; SAA20; Gal+22]. Alleviating the shortcom-
ings of GDA on Lagrangian problems is an important step towards wider adoption of
constrained optimization in deep learning.

While dual restarts [Gal+22] were successful in the L0-sparsity task, they do not con-
stitute a full solution to the deficient multiplier dynamics of GDA. For instance, dual
restarts are not suitable for equality¶¶ or stochastically-estimated constraints***. ¶¶ Or inequality constraints

satisfied with equality.
*** Since estimation noise
could mistakenly flag an
infeasible costraint as being
strictly satisfied.

We identified that the central issue of GDA lay in the lack of adaptivity of themultiplier
updates. In other words, GDA implements “memoryless” updates and, as a result, it
discards historic information on the progress of the constraint violation. Intuitively, the
Lagrange multipliers should react to changes in the satisfaction of the constraint, rather
than just the immediately observed violation.

Thus, we decided to analyze whether generic adaptive or momentum-based methods
for single-objective optimization (such as Polyak [Pol64], Nesterov [Nes83] or Adam
[KB15]) would be sufficient to address these issues. Our exploration led to a negative
answer in this respect, prompting us to look for alternative frameworks.

In thiswork, we study the dynamics of the Lagrangemultipliers froma control-theoretic
perspective. Following Stooke et al. [SAA20], we can think of the update rule of the
multipliers as a control algorithm that aims to drive the model towards feasibility.

Proportional-Integral-Derivative (PID) controllers [ÅH95] are a popular class of con-
trol algorithms used in many applications, from temperature regulation in industrial
processes to flight control systems in aerospace engineering. PID controllers regulate
the value of the control inputs to an underlying dynamical system based on an error sig-
nal that quantifies the discrepancy between the current and desired states. As their name
indicates, PID controllers use the value of the error signal, its integral, and its derivative
to determine the control action.

In constrained optimization, the error signal is given by the violation of the constraints,
while the control inputs to the system correspond to the Lagrangemultipliers. Thedesign
principles behind PID controllers align precisely with our observation that the Lagrange
multipliers should act based on both the value of the current violation, and how this
compares to previous violations†††. ††† In dynamical systems

lingo, the time derivative of
the violations.We introduce a new update scheme for updating the Lagrange multipliers called νPI,

which constitutes a variant of a Proportional-Integral (PI) controller enriched with an
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exponential moving average on the past constraint violations. Inspired by the works
of Lessard et al. [LRP16] and Recht [Rec18], we also (constructively) prove that νPI
constitutes a strict generalization of the Polyak and Nesterov methods.

We provide extensive insights on how νPI improves the dynamics of the Lagrange
multipliers, and empirically demonstrate its effectiveness at stabilizing the training pro-
cess in a variety of constrained optimization problems.

E 8 e

JoseGallego-Posada, JuanRamirez,MerajHashemizadeh, and SimonLacoste-
Julien: Cooper: Constrained Optimization for Deep Learning. MLOSS (under sub-
mission) https://github.com/cooper-org/cooper. 2024. [Chapters 11 and 12].

In the final contribution, we provide a brief overview of the Cooper library for solv-
ing constrained optimization problems involving deep learning models. We developed
Cooper with the goal of making constrained optimization techniques readily available
to machine learning researchers and practitioners.

Cooper implements (andunit-tests!) several first-order update schemes for Lagrangian-
based constrained optimization, along with specialized features for tackling problems
with large numbers of (possibly non-differentiable) constraints. We hope that Cooper
can serve as a unifying‡‡‡ framework to enhance the reproducibility and ease of compar-‡‡‡ Much like how PyTorch

provides the community
with standardized and

tested implementations of
neural network layers and

optimizers.

ison between research projects on constrained optimization for machine learning.

While Cooper can be used as a general-purpose library for non-convex constrained
optimization,§§§ it has a strong emphasis on deep learning. In particular, Cooper has

§§§ And we welcome users
and contributors from fields

adjacent to artificial
intelligence!

been designed to provide native support for the framework of stochastic first-order op-
timization using mini-batch estimates that is prevalent in the training of deep learning
models. Cooper relies on the PyTorch framework [Pas+19] for efficient tensor compu-
tation and automatic differentiation.

Cooper is an open-source project, available under an MIT license, and can be found
at https://github.com/cooper-org/cooper/.

excluded research

In order to keep this thesis topically-focused, the author has decided to exclude several
publications and research outputs produced during the course of his doctoral studies:

JoseGallego-Posada, AnkitVani,Max Schwarzer, and SimonLacoste-Julien:
GAIT: A Geometric Approach to Information Theory. In: AISTATS. 2020.

Sourya Basu, Jose Gallego-Posada, Francesco Viganò, James Rowbottom,
and Taco Cohen: Equivariant Mesh Attention Networks. In: TMLR, (2022).

Shin Koseki, Shazade Jameson, et al.: AI & Cities: Risks, Applications and Gov-
ernance. Tech. rep. Mila-UN Habitat, 2022.

Hao-Jun M. Shi, Tsung-Hsien Lee, Shintaro Iwasaki, Jose Gallego-Posada,
Zhijing Li, Kaushik Rangadurai, Dheevatsa Mudigere, and Michael Rabbat: A
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2Background

In this chapter we provide a brief overview of the main concepts and techniques that
are relevant to the work presented in this thesis. We start by introducing fundamental
concepts from machine learning and popular techniques for deep learning optimization.
We then present core ideas of constraint optimization, the theoretical foundations of the
field, and the main algorithms used to solve constrained optimization problems.

2.1 machine learning

Machine learning is a scientific discipline that studies higher-level algorithms for au-
tomating the programming of lower-level algorithms, referred to as models.

The field of machine learning encompasses various learning paradigms, each tailored
to distinct types of problems and data structures. Supervised learning involves training a
model on a labeled dataset, where the desired output is known. Typical supervised learn-
ing tasks include classification, regression, ranking, object detection and image segmen-
tation. In contrast, self-supervised learning leverages the data to generate labels, allowing
models to learn representations and features without external labeling, commonly used
in natural language processing and computer vision.* Reinforcement learning, on the * Ultimately, self-supervised

learning solves a (sequence
of) supervised learning
problems by procuring
labels from the data itself.

other hand, trains agents through interactions with an environment, optimizing actions
based on cumulative rewards, and is particularly suited for dynamic decision-making
tasks such as game playing and robotic control.

In this thesis wemostly focus on supervised learning problems. We refer the interested
reader to Balestriero et al. [Bal+23] and Sutton and Barto [SB18] for overviews of
self-supervised and reinforcement learning, respectively.

2.1.1 Supervised learning

In supervised learning, we are given a training dataset D = {(in,on)}Nn=1 of labelled
pairs, where in ∈ I is an input vector and on ∈ O is the corresponding output. The
goal is to learn a function h : I → O that successfully approximates the relationship
between inputs and outputs in the dataset. We call h the hypothesis, model or predictor.

Suppose the inputs in correspond to a 9x9 matrix representation of a Sudoku puzzle.
Let us examine multiple instantiations of supervised learning tasks depending on the
nature of the labels:

• Classification: on ∈ {True, False} a label determining whether the puzzle has
been solved correctly.

11
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• Regression: on ∈ R+ indicates the average time humans took to solve the puzzle.

• Structured prediction; multi-label classification: on ∈ I is a 9x9 matrix repre-
senting a solution to the puzzle.

• Sequence prediction: on is a sequence of cell-value pairs representing the steps
needed to solve the puzzle.

Given a predictor, we can evaluate its performance by comparing its predictions to the
true labels in the training data. We quantify the discrepancy between the predicted and
true outputs via a loss function ℓ : O ×O → R, which measures the error between the
predicted and true outputs.†† The choice of a suitable

loss function is
problem-dependent and
crucially influences the

performance of the learned
predictor.

We typically do not have access to the entire distribution of the data Pdata,‡ but only

‡ For instance, there are
∼ 1021 valid Sudokus.

to the finite sampleD. This prevents us from measuring (and thus optimizing!) the true
risk of the predictor:

R(h) = E(i,o)∼Pdata [ℓ(h(i),o)]. (2.1)

The Empirical Risk Minimization (ERM) principle [Vap91] proposes to replace the
true risk functional in Eq. (2.1) by the empirical risk over the sample D and treat this as
an optimization objective:

R̂D(h) =
1

N

N∑
n=1

ℓ(h(in),on). (2.2)

The goal of learning is to find amodel that generalizes to unseen samples from the data
distribution, i.e., a model with low true risk. In contrast, the goal of training is to find a
model that minimizes the empirical risk over the available dataset.

This discrepancy between the learning and training goals is known as the generaliza-
tion gap. A model that performs well on the training data but poorly on unseen data is
said to overfit the training data. Many regularization techniques exist to mitigate over-
fitting, such as the use of (cross-)validation, early stopping, weight decay, and dropout.
See Goodfellow et al. [GBC16, §5.2-5.3] for an overview of these techniques.

A notable challenge of the ERM protocol presented thus far is that the loss function
ℓ may not be differentiable, making the minimization of the empirical risk intractable.
For instance, we may wish to minimize the miss-classification rate, corresponding to the
so-called 0-1 loss. This loss function is non-differentiable and discontinuous. A common
approach is to use a surrogate loss function ℓ̃ that approximates the true loss function ℓ
andhas desirable optimization properties such as differentiability and convexity. Popular
surrogate loss functions include the cross-entropy loss for classification problems and the
mean squared error for regression problems.

2.1.2 Regularization via additive penalties

Better generalization is only one of the many different goals that can be pursued when
applying regularization techniques. Other desired behaviors may include sparsity,§ ro-§ Be it for feature selection

or compute efficiency bustness, fairness, interpretability or numerical stability.
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A popular approach for enforcing these behaviors is to augment the empirical risk
with an additive regularization term R, weighted by a penalty parameter λ:

R̂D(h) + λR(h). (2.3)

This penalized approach is widespread in many deep learning applications including
generative models [Hig+17], sparse models [LWK18], self-supervised learning [BPL22]
and fine-tuning of large language models [Raf+23]. Often, the employed regularizers
are motivated from statistical (e.g. a Bayesian prior) or optimization (e.g. improving
convexity properties) considerations.

The penalty parameter λ controls the trade-off between the training objective and
the regularization term, and typically must be tuned via cross-validation or other hyper-
parameter optimization techniques.

2.1.3 Parametric models and neural network architectures

We concentrate on parametric models, where the predictor h is defined by a vector of
parameters x ∈ Rp. In practice, training is thus “reduced” to the solution of an uncon-
strained, finite-dimensional¶ minimization problem: ¶ Albeit often very large!

min
x∈Rp

f(x) ≜ 1

N

N∑
n=1

ℓ̃(hx(in),on). (2.4)

Deep learning is a prominent subfield of machine learning that favors neural networks
as the parametric models of choice [GBC16]. A central tenet of deep learning is the use
of large� deep neural networks, which are compositions of functional modules called � I.e., with many

parameters.layers and non-linear activation functions.**
** The parameters of the
network are often called
weights and biases.

Formally, a neural network is a function hx : I → O defined by the composition of
a sequence of layers ψ1, . . . , ψL:

hx = ψL ◦ . . . ◦ ψ1. (2.5)

There exist many options for the layers ψl, including activation, fully-connected, con-
volutional, recurrent, batch normalization and attention layers. Each of these layers in-
troduces different inductive biases†† that determine its performance on different learning †† Modelling assumptions

made about the data.tasks. A specific arrangement of layers is known as a neural network architecture. For fur-
ther details on neural network architectures, see Goodfellow et al. [GBC16], Bishop
and Bishop [BB23], and Prince [Pri23].

2.1.4 Neural network training

During the past decade, software advances in automatic differentiation‡‡ [Pas+19; Aba+15; ‡‡ Removing the need for
manually-derived gradients,
while preserving numerical
stability.

Dee+20] and the development of specialized hardware for efficient matrix multiplica-
tions (such as GPUs, TPUs) have enabled the training of large deep networks on large-
scale datasets.
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Note that in the context of a large dataset, exactly evaluating the surrogate empirical
risk in Eq. (2.4) can be computationally expensive. To mitigate this issue, we typically
use stochastic optimization algorithms that approximate the gradient of the empirical risk
using a small subset of the data, known as a mini-batch.

Furthermore, the large number of parameters in the network, coupled with the non-
convexity of the problem have historically precluded the widespread use of second-order
optimization methods such as Newton’s method or the L-BFGS algorithm [LN89].

This socio-technical context motivated the surge in popularity of stochastic gradient
descent (SGD) [RM51] and its variants, which are first-order, iterative optimization al-
gorithms that are well-suited for the optimization of large-scale, non-convex problems.

A mini-batch SGD update on the parameters x of the network for Eq. (2.4) entails:
Sample a mini-batch {(in,on)}Bn=1from D

Compute an unbiased gradient estimate: gt ≜ 1
B

∑B
n=1∇xt ℓ̃(hx(in),on)

Update the parameters: xt+1 ← xt − ηprimal gt,

(2.6)

where ηprimal is a hyper-parameter of the optimization procedure known as the learning
rate or step-size.

For convergence analyses of SGD in the convex and stochastic settings from amachine
learning perspective, see Bubeck et al. [Bub+15].

Several variants of SGD have been proposed to improve convergence and robustness
on the non-convex deep learning optimization landscapes. Well studied options are the
accelerated and adaptive families of methods. Notable examples include Polyak [Pol64]
and Nesterov [Nes83] momentum methods, as well as Adagrad [DHS11] and Adam
[KB15].

2.2 theory of constrained optimization

Many practical problems comewith inherent constraints, such as budget limits, resource
capacities, physical laws, or specific operational requirements. Constrained optimiza-
tion allows for the incorporation of real-world limitations and requirements directly
into the optimization process. By considering these constraints explicitly, constrained
optimization ensures that the solutions are not only optimal in terms of the objective
function but also feasible and applicable in real scenarios.

For instance, latency limitations might require a model to make predictions within a
certain time frame. Since the latency of the model is controlled by the amount of com-
putation required to make a prediction, which in turns depends on the number of active
parameters in the model. Therefore, we can encode the latency requirements by con-
straining the number of active parameters in the model.

In this section, we introduce the basic language, concepts and mathematical results
of non-linear constrained optimization. In Section 2.3 we present several algorithmic
approaches for solving constrained optimization problems.
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Throughout this sectionwe assume that the objective and constraints are continuously
differentiable functions from Rp to R.

2.2.1 Feasibility

Problem-dependent requirements can be abstractly specified by restricting the optimiza-
tion problem to a subset of the parameter space Ω ⊂ Rp. Ω is known as the feasible set
and its elements are called feasible vectors.

Whenever Ω is empty, we say that the problem is infeasible. Infeasibility may arise
from different sources: the problem may be ill-posed, the constraints may be contradic-
tory, or the feasible set may be too restrictive.

Unfortunately, establishing whether a problem is feasiblemay be as hard as solving the
problem itself. Analyzing the semantics of the constraints at hand is often a productive
approach to understanding the feasibility of the problem. For example, in the neural
network sparsity problem considered in Chapter 4, the constraints demand that at most
a certain number of parameters of the network are active. Given the parametrization
chosen for that problem, it is evident that feasible solutions exist for any sparsity level.

However, in other cases, the constraints may be more complex and establishing fea-
sibility is not possible from a simple inspection of the constraints. For instance, the
disparate impact constraints presented in Chapter 8 request that the performance of the
model be sufficiently high across different data sub-groups, within a prescribed toler-
ance. Here, the constraints depend not only on the model parameters, but also on the
available training data. Setting appropriate tolerances to ensure feasibility of the problem
is a design decision that needs to be informed by an understanding of the application’s
context. Regulations or company policies may dictate what level of disparate impact is
acceptable for a given application.

2.2.2 Feasibility and accountability

We emphasize the fact that formulating the optimization problem requires an under-
standing of the application domain. For instance, the maximum allowable latency de-
pends on how time-critical the predictions are.

Consider two vectorsx ∈ Ω andx′ /∈ Ω, such thatx′ achieves a better objective value
than x. Although in the unconstrained setting x′ would be preferred, its infeasibility
rules it out as a valid solution for the constrained problem. For example, returning to the
latency-constrained problem, x′ might correspond to a solution with better predictive
performance, but whose latency makes it unsuitable for deployment.

While, strictly speaking, feasible vectors are the only valid solutions to the optimiza-
tion problem, real applications often involve uncertainty on the admissible trade-offs:
do users prefer a slightly slower model with better performance, or a faster model with
slightly worse performance? Some results in constrained optimization, such as the sen-
sitivity interpretation of the multipliers (Section 2.2.8), can help inform these decisions.
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More importantly, we argue that constrained formulations provide enhanced account-
ability in the model development process. Consider a setting in which the constraints
are prescribed by a regulatory body, such as the maximum allowable disparity across
protected demographics in a credit scoring application. In the constrained approach,
application requirements are embedded directly into the optimization pipeline. There-
fore, rather than aiming for models that happened to satisfy the regulations, we look for
models that are designed to respect them.

The accountability and transparency afforded by the constrained optimization frame-
work are crucial in an era of (justified) increased scrutiny on the development of ma-
chine learning models for socially-impactful applications. Constrained optimization
enables service providers to demonstrate regulatory compliance to stakeholders and en-
forcement agencies.

2.2.3 Problem formulation

In this section we concentrate on the constrained minimization problem

find x∗ ∈ argmin
x∈Ω

f(x). (CMP)

A point x∗ is an (constrained) global minimum of f if f(x∗) ≤ f(x) for all x ∈ Ω.

The optimal value of problem (CMP) is defined as the objective value attained at any
constrained global minimum: f∗ ≜ infx∈Ω f(x).

Often, achieving a global minimum is too ambitious and we must settle for a weaker
notion of optimality. We a point x∗ a (constrained) local minimum of f if x∗ is feasible
and there exists a neighborhoodN of x∗ such that f(x∗) ≤ f(x) for all x ∈ N ∩Ω.

The feasible set Ω is typically defined by a collection of constraints that must be re-
spected for a candidate solution to be considered valid. Constraints can be classified
into two categories: equality constraints and inequality constraints.

Ω =

{
x ∈ Rp

∣∣∣∣ gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , n

}
(2.7)

Defining g(x) ≜ (g1(x), . . . , gm(x)) and h(x) ≜ (h1(x), . . . , hn(x)), we can re-
express the problem (CMP) as:

min
x∈Rp

f(x) subject to g(x) ≤ 0 and h(x) = 0. (CMP)

Whenever gi(x) > 0, we say that the i-th inequality constraint is violated at x. Sim-
ilarly, if hj(x) 6= 0, we say the j-th equality constraint is violated. Otherwise, the con-
straint is said to be satisfied.

For a feasible point x, the set of active (inequality) constraints* is defined as* The feasibility of x forces
the equality constraints to

be trivially active. AI(x) ≜ {i | gi(x) = 0} . (2.8)
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The set of all active constraints at a feasible point x is defined as† † ⊎ denotes the disjoint
union of sets.

A(x) = {j ∈ 1, . . . n} ] AI(x). (2.9)

If x is feasible and i /∈ AI(x), the constraint gi(x) < 0 is said to be inactive or strictly
satisfied at x.

The set of linearized feasible directions at a feasible x indicates the set of perturbations
that can be applied to x while locally preserving feasibility and is defined by

F(x) =

{
d ∈ Rp

∣∣∣∣ d⊤∇gi(x) ≤ 0, i ∈ AI(x)

d⊤∇hj(x) = 0, j = 1, . . . , n

}
. (2.10)

Note that if x∗ is a local optimum of problem (CMP), then x∗ is also a local optimum
of a version of (CMP) where the inactive constraints at x∗ are removed and the active
inequality constraints are replaced by equalities. As Bertsekas [Ber16, p. 377] argues,
at a local minimum “inactive constraints at x∗ don’t matter” and “active inequality con-
straints can be treated to a large extent as equalities”.

Remark: These claims do not purport an equivalence between the problems with and
without inactive constraints. First, removing a constraint may enlarge the feasible set
and allow for new, better, local minima. Second, recall the discussion on the differences
between optimization and learning presented in Section 2.1.1. The dynamics observed
during training may be highly dependent on whether an inactive constraint is removed
or not. During the course of optimization, the presence or absence of the constraint may
lead to convergence to a different local minimum, which may have different objective
value and generalization properties.

2.2.4 Lagrangian duality

For simplicity, throughout this subsection we assume problem (CMP) is feasible and has
bounded optimal value.

The Lagrangian function of the problem (CMP) is defined by

L(x,λ,µ) ≜ f(x) + λ⊤g(x) + µ⊤h(x), (2.11)

whereλ ≥ 0 ∈ Rmandµ ∈ Rn are the Lagrange multipliers associated with the inequal-
ity and equality constraints, respectively.‡ ‡ The domain restriction on

λ ensures that we deal with
g(x) ≤ 0 constraints and
not g(x) ≥ 0.

The structure of the Lagrangian function allows us to determine, through extremiza-
tion of the multipliers, whether a given point x is feasible:

F (x) ≜ sup
λ≥0,µ

L(x,λ,µ) =

 f(x) if x ∈ Ω,

+∞ otherwise.
(2.12)
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Therefore, solving the constrained problem (CMP) is conceptually equivalent to min-
imizing the unconstrained function F (x).§ In other words,§ Taking values in the

extended reals.
min
x∈Ω

f(x)⇔ min
x∈Rp

F (x)⇔ min
x∈Rp

max
λ≥0,µ

L(x,λ,µ). (2.13)

Note that the Lagrangian, as a function, has the same structure as a penalized method:
a linear combination of the objective functions and the constraints or penalties, weighted
by appropriate coefficients.

However, there is a fundamental difference between the unconstrained minimization
of a penalized objective, and the problem in Eq. (2.12). In the penalized approach,
the penalty coefficients are fixed hyper-parameters of the problem. In contrast, in the
Lagrangian approach, the multipliers are optimization variables, which dynamically re-
weigh the different constraints throughout the optimization process.

Let us denote by p∗ the optimal value of problem (CMP):

p∗ ≜ inf
x∈Rp

sup
λ≥0,µ

L(x,λ,µ). (2.14)

Wedefine thedual function q(λ,µ)¶ as the unconstrainedminimumof the Lagrangian:¶ Since the multipliersλ and
µ are the arguments of the
dual function, they are also
called the “dual variables”. q(λ,µ) ≜ inf

x∈Rp
L(x,λ,µ). (2.15)

For any feasible x, and λ ≥ 0,µ, we have the following lower-bound:

q(λ,µ) = inf
x̄
L(x̄,λ,µ) ≤ f(x) + λ⊤g(x)︸ ︷︷ ︸

non-positive

+����
µ⊤h(x) ≤ f(x). (2.16)

Note that the dual function is concave in λ and µ, regardless of the convexity of the
original problem (CMP). The concavity of the dual function naturally invites the follow-
ing definition, which concerns the best lower-bound achievable by the dual function.

We define the dual problem� of (CMP) as:� Problem (CMP) is called
the primal problem, and x
are known as the “primal

variables”.
max
λ,µ

q(λ,µ) subject to λ ≥ 0. (CMP)

Solutions to the dual problem are called dual optimal points. The difference between
the optimal values of the primal and dual problems p∗−d∗ is known as the duality gap:**** Which is always

non-negative.
Theorem 2.2.1 [Ber16, Thm. 6.1.3] (Weak Duality)

sup
λ≥0,µ

q(λ,µ) = sup
λ≥0,µ

inf
x∈Rp

L(x,λ,µ) ≤ inf
x∈Rp

sup
λ≥0,µ

L(x,λ,µ) = inf
x∈Rp

F (x) (2.17)

Concisely, d∗ ≤ p∗.
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A saddle-point†† of the Lagrangian is a tuple (x∗,λ∗,µ∗) such that: †† This is equivalent to a
pure Nash equilibrium of
the corresponding zero-sum
Lagrangian game.

L(x∗,λ,µ) ≤ L(x∗,λ∗,µ∗) ≤ L(x,λ∗,µ∗) ∀x,λ ≥ 0,µ. (2.18)

We define the saddle point problem as the join optimization:

x∗ ∈ argmin
x

L(x,λ∗,µ∗) and λ∗,µ∗ ∈ argmax
λ,µ

L(x∗,λ,µ). (SPP)

The existence of a saddle-point implies zero duality gap. This condition is known as
strong duality.

Theorem 2.2.2 [BV04, §5.4.2]

If (x,λ,µ) is a saddle-point of the Lagrangian, then x is primal optimal, and λ and µ
are dual optimal, and strong duality holds. Conversely, if x∗ is primal optimal and λ∗ and
µ∗ are dual optimal for a problem with no duality gap, then (x∗,λ∗,µ∗) is a saddle-point
of the Lagrangian.

Theprevious theorem states that solving a constrained optimization problem forwhich
strong duality holds is equivalent to finding a saddle-point. However, strong duality gen-
erally does not hold for non-convex problems, and thus saddle-points may not exist.‡‡ ‡‡ Some of the constraint

qualifications presented in
Section 2.2.6 can be used to
establish strong duality in
convex problems.

Fig. 2.1 illustrates a non-convex problem§§ with a duality gap p∗−d∗ > 0. The shaded

§§ With a single inequality
constraint.

region represents all the realizable trade-offs between the objective and the constraints:
S = {(g(x), f(x))|x ∈ Rp}. Note that this region includes both feasible (the left half-
space) and infeasible configurations.

Figure 2.1: A non-convex constrained optimization problem with a positive duality gap.

For a general problem with equality and inequality constraints, evaluating the dual
function is equivalent to solving a linear program over the set of realizable trade-offs:

q(λ,µ) = inf
x∈Rp

L(x,λ,µ) = inf
s∈S

[1,λ,µ]⊤s (2.19)
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Therefore, we can interpret the dual problem as searching for a supporting hyperplane
that contains the set S in its positive half-space and has maximal intersection with the
vertical axis. Said point of maximal intersection corresponds to the optimal dual value
d∗, and the slope of the hyperplane corresponds to a dual optimal point (λ∗,µ∗).

We highlight that the inability to express p∗ via one such hyperplane is directly con-
nected to the inability of penalized methods to fully explore the Pareto frontier of the
problem [BV04, §4.7.4].

For further details on the geometric interpretation of duality for Lagrangian problems,
see Bertsekas [Ber16, §6.1].

2.2.5 Karush-Kuhn-Tucker conditions

The celebrated Karush-Kuhn-Tucker (KKT) conditions are a set of necessary conditions
for optimality of a constrained optimization problem. The KKT conditions are a corner-
stone of constrained optimization theory and constitute the foundation for many algo-
rithmic approaches.

A feasible vector x is said to be regular if the gradients of all active constraints A(x)
are linearly independent at x.

Theorem 2.2.3 [Ber16, Prop. 4.3.1] (Karush-Kuhn-Tucker Necessary Conditions)

Let x∗ be a local minimum of problem (CMP) and assume x∗ is regular. Then there
exist unique Lagrange multipliers λ∗ and µ∗ such that

∇xL(x
∗,λ∗,µ∗) = 0, (Stationarity)

λ∗ ≥ 0, (Dual feasibility) (2.20)
λi = 0 ∀i /∈ AI(x

∗). (Complementary slackness)

Note that the stationarity condition states that, at a regular local minimum x∗, the
gradients of the objective and (active) constraints balance each other:

−∇f(x∗) =
∑

i∈AI(x∗)

λ∗
i∇gi(x∗) +

n∑
j=1

µ∗
j∇hj(x∗). (2.21)

2.2.6 Existence of Lagrange multipliers and constraint qualifications

As we saw in Section 2.2.5, regularity¶¶ is sufficient to ensure the existence of (unique)¶¶ Regularity may be too
strong an assumption for

many applications.
Lagrange multipliers at a local minimum. Other assumptions of this kind, aimed at en-
suring the existence of Lagrange multipliers, are known as constraint qualifications.

Different kinds of constraint qualifications arise from structure present in the prob-
lem’s constraints. For example, the popular Slater’s condition [Sla59] states:

Theorem 2.2.4 [Ber16, Prop. 4.3.9] (Slater’s Condition for Convex Inequalities)
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Let x∗ be local minimum of problem (CMP). Assume that the equality constraints are
linear, the inequality constraints are convex, and that there exists a feasible point x̄ with

gi(x̄) < 0 ∀i ∈ AI(x
∗).

Then x∗ satisfies the necessary conditions of Thm. 2.2.3.

The following theorem highlights the connection between the existence of Lagrange
multipliers and the local geometry of the feasible set around a local minimum.

Theorem 2.2.5 [Ber16, Prop. 4.3.13] (Necessary and Sufficient Conditions for Exis-
tence of Lagrange Multipliers)

Letx∗ be a local minimum of problem (CMP). Then there exist Lagrange multipliersλ∗

and µ∗ satisfying the KKT conditions (Eq. (2.20)) if and only if F(x∗) does not contain
any descent direction:

∇f(x∗)⊤d ≥ 0 ∀d ∈ F(x∗).

In other words, Lagrange multipliers do not exist precisely when there is a feasibility-
preserving direction (up to first order) along which the objective function decreases.
This can only occur when the true set of feasible variations*** around x∗ differs sub- *** This set called the

tangent cone of Ω at x∗,
denoted TΩ(x∗); see
Nocedal and Wright
[NW06, Def. 12.2].

stantially from the linearized F(x∗) [Ber16, p. 406].††† Constraint qualifications can be

††† Points for which TΩ(x∗)
and F(x∗) coincide are
known as quasi-regular in
Bertsekas [Ber16].

generally regarded as conditions that ensure alignment between these two sets.

Fig. 2.2 displays a hierarchy of classic constraint qualifications. For a modern, com-
prehensive review of constraint qualifications, we refer the reader to Giorgi [Gio18].

Linear
constraints

Regularity Slater’s
condition

Concave
inequalities

Linear independence/
interior point

Pseudonormality

Quasiregularity

Existence of
Lagrange multipliers

Figure 2.2: Hierarchy of constraint qualifications. Adapted from Bertsekas [Ber16, p. 407].

21



Constrained Optimization for Machine Learning

2.2.7 Second-order conditions

Given a feasible point x∗ and Lagrange multipliers λ∗ andµ∗ satisfying the KKT condi-
tions in Eq. (2.20), we define the critical cone as

C(x∗,λ∗,µ∗) ≜
{
d ∈ F(x∗)

∣∣∣∣d⊤∇gi(x∗) = 0 ∀i ∈ AI(x
∗) with λ∗

i > 0

}
. (2.22)

Note that the critical cone is a subset of F(x∗) and is constituted by directions that
preserve feasibility and the set of active constraints (i.e., the constraints for which the
Lagrange multipliers are positive).

From the stationarity KKT condition in Eq. (2.20), every d ∈ C(x∗,λ∗,µ∗) satisfies:

d⊤∇f(x∗) =

m∑
i=1

λ∗
id

⊤∇gi(x∗) +
n∑
j=1

µ∗
jd

⊤∇hj(x∗) = 0. (2.23)

Therefore, the critical cone C(x∗,λ∗,µ∗) contains those feasibility-preserving direc-
tions for which first order information is insufficient to determine the change in the
objective function.

In the remainder of this subsection, we assume that f , g andh are twice continuously
differentiable.

Theorem 2.2.6 [NW06, Thm. 12.5] (Second-Order Necessary Conditions)

Let x∗ be a local minimum of problem (CMP) and assume x∗ is regular. Let λ∗ andµ∗

be the Lagrange multipliers that satisfy the KKT conditions Eq. (2.20). Then

d⊤∇2
xx L(x∗,λ∗,µ∗)d ≥ 0, for all d ∈ C(x∗,λ∗,µ∗).

In other words, a valid KKT tuple (x∗,λ∗,µ∗)must yield a Hessian of the Lagrangian
that is positive semi-definite over the critical cone. This clearly generalizes the second-
order necessary conditions for unconstrained optimization [Ber16, Prop. 1.1.1] since
the critical cone in the unconstrained case is the entire space Rp.

Theorem 2.2.7 [NW06, Thm. 12.6] (Second-Order Sufficient Conditions)

Consider a feasible point x∗ and suppose there exist Lagrange multipliers λ∗ and µ∗

satisfying the KKT conditions Eq. (2.20). Suppose also that

d⊤∇2
xx L(x∗,λ∗,µ∗)d > 0, for all d ∈ C(x∗,λ∗,µ∗), d 6= 0.

Then x∗ is a strict local minimum of problem (CMP).

2.2.8 Interpretation of the Lagrange multipliers

Given a valid KKT tuple (x∗,λ∗,µ∗), it is possible to provide an intuitive interpreta-
tion of the Lagrange multipliers as indicating the sensitivity of the objective function to
changes of the constraints.
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2 Background

Consider parametric generalization of the problem (CMP). Let u ∈ Rm and v ∈ Rn:

min
x∈Rp

f(x) subject to g(x) ≤ u and h(x) = v. (CMP(u,v))

Depending on the signs of the components ofu and v, we are considering tightenings
or relaxations of the constraints.

Theorem 2.2.8 [Ber16, Prop. 4.3.3] (Sensitivity)

Let x∗ be a local minimum of problem (CMP) and assume x∗ is regular. Let λ∗ andµ∗

be Lagrange multipliers satisfying the second-order sufficiency conditions in Thm. 2.2.7.

Then there exists an open sphere S centered at (0,0) such that for any (u,v) ∈ S ,
there exist an x(u,v) that is a local minimum of problem (CMP(u,v)), and Lagrange
multipliers λ(u,v) and µ(u,v) that satisfy the KKT conditions for (CMP(u,v)).

The mapping (u,v) 7→ (x(u,v),λ(u,v),µ(u,v)) is continuously differentiable on
S and x(0,0) = x∗, λ∗(0,0) = λ∗, µ∗(0,0) = µ∗.

Let p(u,v) be the optimal value of problem (CMP(u,v)). Then

∇up(u,v) = −λ(u,v), ∇vp(u,v) = −µ(u,v).

Evidently, we have that∇up(0,0) = −λ∗ and∇vp(0,0) = −µ∗. Therefore, a small
value‡‡‡ of λi indicates that a small change in the constraint level for the i-th inequality ‡‡‡ Think of the case of an

inactive constraint.constraintwill not significantly affect the objective function.§§§ Analogously, for example,
§§§ Upon fully re-solving the
problem with the updated
constraint level.

a large positive values of the multiplier suggest a reduction (read improvement) of the
objective function upon relaxing the constraint.

2.3 algorithms for constrained optimization

In this sectionwe present an overview of the several core algorithmic approaches for solv-
ing non-convex constrained optimization problems. Given the vast literature in the field
of non-linear programming, with notable progress during the secondhalf of the 20th cen-
tury, our presentation is bound to be incomplete. We invite the interested reader to con-
sult the works by Boyd and Vandenberghe [BV04], Nocedal and Wright [NW06],
and Bertsekas [Ber16] for a comprehensive review of the field and pointers to other
relevant literature.

We concentrate on Lagrangian-based methods since their reliance on well-developed
technology for unconstrained minimization makes them most suitable to the type of
optimization problems arising in deep learning applications. This is of particular impor-
tance given the highly specialized procedures used for training neural networks [Dah+23].

The differences in the generalization properties of multiple local minima require the
use of optimization algorithms that integrate well with the learning dynamics of deep
learning models. Informally, achieving feasibility too early in the optimization process
may lead to convergence to a local minimum with poor generalization properties.
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A number of techniques such as the Frank-Wolfe algorithm [FW56], and projection-
based methods assume special structure of the objective or feasible set (like existence of
an efficient proximal operator or a linear minimization oracle), making them less appli-
cable to general non-convex optimization problems.

Notably, we do not touch upon interior point methods, given their heavy dependence
on the use of of Newton’s method for solving the resulting KKT systems. For a review
on interior point methods, we refer the reader to Forsgren et al. [FGW02].

2.3.1 Simultaneous Gradient Descent-Ascent

As we discussed in Section 2.2.4, we cannot rely on the existence of saddle-points as
strong duality typically does not hold for non-convex problems. In practice, we relax
our notion of optimality to approximately-stationary points of the function Φ(x) ≜
supλ≥0,µ L(x,λ,µ). A pointx is said to be an ϵ-stationary point ofΦ if ‖∇Φ(x)‖ ≤ ϵ.** Φ is in general not

differentiable, see Lin et al.
[LJJ20] for more general

stationarity definitions in
that setting.

Note that the search for approximately-stationary points ofΦ breaks the symmetry of
saddle point problem SPP, placing greater importance on the primal variables x. This
notion of optimality is appropriate for our purposes since we are usually more interested
in finding a feasible solution with good optimality properties, rather than high-precision
estimates of the multipliers.

This search for approximately-stationary points ofΦ can be undertaken by first-order
Lagrangian methods [AHU58]. The simplest Lagrangian method is the (projected)† si-† For preserving the

non-negativity of the
multipliers associated with
the inequality constraints.

multaneous gradient descent-ascent scheme:
xt+1 ← xt − ηprimal∇xL(xt,λt,µt)

λt+1 ← [λt + ηdual∇λL(xt,λt,µt)]+

µt+1 ← µt + ηdual∇µL(xt,λt,µt).

(GDA)

Given the special structure of the Lagrangian function (Eq. (2.11)), we can simplify
the GDA updates to:

xt+1 ← xt − ηprimal∇xL(xt,λt,µt)

λt+1 ← [λt + ηdualg(xt)]+

µt+1 ← µt + ηdualh(xt).

(2.24)

A tuple (x∗,λ∗,µ∗) is said to be a point of attraction of an iterative scheme‡ if there‡ Such as (GDA).
exists an open setS ⊂ Rp+m+n such that when initializing at (x0,λ0,µ0) ∈ S, then the
sequence of iterates generated by said scheme belongs toS and converges to (x∗,λ∗,µ∗).

The following result establishes the local convergence of the gradient descent-ascent
scheme (GDA). Although the result is presented for a problem with only equality con-
straints, it also encompasses the case of inequality constraints.§§ One can use auxiliary

variables to convert the
inequality constraints into
equalities and re-use the

analysis.
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2 Background

Theorem 2.3.1 [Ber16, Thm. 5.4.2] (Local Convergence of GDA)

Assume that f and h are twice continuously differentiable and let (x∗,µ∗) be a local
minimum-Lagrange multiplier pair. Assume also that x∗ is regular and that the matrix
∇2

xxL(x
∗,µ∗) is positive definite. Then there exists ᾱ > 0 such that for all ηprimal, ηdual ∈

(0, ᾱ], the point (x∗,µ∗) is a point of attraction of the iteration (GDA), and if the generated
sequence {(xk,µk)} converges to (x∗,µ∗), then the rates of convergence of ||xk − x∗||
and ||µk − µ∗|| are linear.

Lin et al. [LJJ20] provide more sophisticated results for the convergence of stochastic
GDA on more general, nonconvex-concave min-max problems.

Having established the convergence of GDA under appropriate conditions, let us ex-
plore further properties of this iterative scheme.

2.3.2 Dynamics of GDA

Consider the update on the primal variables:

xt+1 ← xt − ηprimal∇xL(xt,λt,µt) (2.25a)

= xt − ηprimal

∇f(xt) + m∑
i=1

λ
(i)
t ∇gi(xt) +

n∑
j=1

µ
(i)
t ∇hi(xt)

 . (2.25b)

The primal update direction is a linear combination of the gradient of the objective
function and the gradients of the constraints, weighted by the multipliers. Large values
of the multipliers nudge the update∇xL towards moving in a descent direction for the
constraints, thus improving feasibility. Whenever the multipliers have small magnitude,
the update is mostly determined by the gradient of the objective function.

The update for the inequality¶ multipliers is given by: ¶ The analysis is analogous
for equality multipliers,
without the projection step.λt+1 ← [λt + ηdual∇λL(xt,λt,µt)]+ = [λt + ηdual g(xt)]+ . (2.26)

The update to themultiplier is determined by the value of the constraint at the current
iterate xt. Whenever the i-th inequality constraint is strictly satisfied, gi(xt) < 0, and
the value of the corresponding multiplier is decreased.� In contrast, when the constraint � Unless the previous

multiplier value was zero.is violated, gi(xt) > 0 and the multiplier is increased.

In other words, the value the multiplier corresponds to the accumulated constraint vi-
olation throughout the optimization process. Constraints that are consistently violated
will have corresponding multipliers with large magnitude** and will exert a strong influ- ** Recall that equality

constraints do not have a
sign restriction in their
multipliers.

ence on the primal iterates to improve their feasibility.

2.3.3 Computational cost of GDA

GDA is particularly suitable for deep learning problems. As a first order method, the
computational cost of each iteration is dominated by the computation of objective func-
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tion, the constraints and their corresponding gradients.

In reverse-mode automatic differentiation,†† a function is evaluated first and then its†† This is default in modern
deep learning frameworks. gradient is computed using the chain rule by following the computational graph in re-

verse order [GBC16, §6.5]. The evaluation of the function is known as the forward pass,
while the computation of the gradient is called a backward pass through the computa-
tional graph.

The main ingredients required for the execution of a single iteration of GDA are:

• The gradient of the objective function∇f(xt).

• The value and gradients of the constraints g(xt) and h(xt).

• The linear combination of objective and constraint gradients∇xL(xt,λt,µt).

In the presence of many constraints, storing individual gradients for each constraints
would cause a significant memory overhead. Fortunately, this can be avoided by arrang-
ing the computation astutely:

1. Evaluate the objective function f(xt) and the constraints g(xt) and h(xt).

2. Compute the Lagrangian L(xt,λt,µt).

3. Compute the gradient∇xL(xt,λt,µt) using automatic differentiation.

4. Update the primal variables to obtain xt+1.

5. Update the dual variables using the previously computed g(xt) and h(xt) to ob-
tain λt+1 and µt+1.

Given the objective and constraint values, computing the value of the Lagrangian can
be done inO(m+ n) time. Typically the number of constraints is many orders of mag-
nitude smaller than the number of parameters in the model, making the cost so far dom-
inated by the evaluation of the objective and constraint functions.

At this stage, for fixedλt andµt, the contribution of the constraints to the Lagrangian
may be regarded as an additive regularization or penalty to objective [GBC16, §5.2.2].
Therefore, the cost of computing the gradient of the Lagrangian with respect to x and
the subsequent primal update do not represent any additional computational burden
compared to the additive regularization approach (see Section 2.1.2).

Finally, the update of the Lagrange multipliers also requires O(m + n) time, as it in-
volves simple element-wise operations based on the measured constraint values. Again,
this cost is negligible considering the typical scale of a deep learning model.

We highlight that it is common for the objective and constraints to share a large por-
tion of the computational graph, which can translate into further reductions in computa-
tional cost. For example, constraints on the output of a neural network can be calculated
as a byproduct of the computation of the training loss on a given mini-batch.

The presentation of the Cooper library in Chapter 12 expands on the practical aspects
of implementing GDA-like schemes for deep learning problems.
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2.3.4 Alternating updates

Wehave seen how theGDA approach can provably (locally) converge toKKTpairs. How-
ever, in practice, simultaneous updates may lead to oscillatory or unstable behavior. A
simplemodification to theGDA scheme is to alternate the updates of the primal and dual
variables. Alternating schemes have been shown to improve the stability properties of
the optimization process [Gid+19b].

The following recurrences formalize the alternating primal-dual gradient descent-ascent
and alternating dual-primal gradient descent-ascent schemes. The core difference be-
tween these two variants is the order in which the primal and dual variables are updated.


xt+1 ← xt − ηprimal∇xL(xt,λt,µt)

λt+1 ← [λt + ηdual g(xt+1)]+

µt+1 ← µt + ηdualh(xt+1)

(APD-GDA)


λt+1 ← [λt + ηdualg(xt)]+

µt+1 ← µt + ηdualh(xt)

xt+1 ← xt − ηprimal∇xL(xt,λt+1,µt+1)

(ADP-GDA)

Although these two variants are intimately connected,‡‡ the ADP-GDA scheme can ‡‡ Yet not equivalent
algorithms!be more amenable to implementation in deep learning frameworks such as PyTorch.

Strictly speaking, in the APD-GDA scheme we need to evaluate the loss and constraints
at xt to carry out the primal update. Then, we need to re-evaluate the constraints func-
tions at the new iterate xt+1 to update the multipliers.

In the “full-batch” optimization setting, ingenious caching can re-use the computation
performed during the evaluation of g(xt+1) and h(xt+1) for the subsequent primal
update. However, in the stochastic setting, the validity of the cache-based approach is
not immediately clear since the mini-batches of data might differ between the primal
and dual updates.

In contrast, to carry out the APD-GDA updates, we require g(xt), h(xt) (for the dual
updates), alongwith f(xt) (for the primal update).§§ Note that the primal iterate atwhich §§ And their

automatically-differentiated
gradients, of course.

these functions are evaluated is always xt, and thus no re-evaluation or change of mini-
batch is involved.

2.3.5 Extragradient updates

The extragradient method [Kor76] is another popular technique for solving saddle-point
problems, with better stability and convergence properties than GDA. The ExtraGradi-
ent method visits an “extrapolated” (read simulated) point by performing a trial step in
the direction of the current gradient. Then, the gradient at the extrapolated point is used
to update the current (non-extrapolated) iterate.
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Formally, the ExtraGradient method for solving finding saddle-points of the La-
grangian (SPP) is determined by the following recurrence relations:

x̂t ← xt − ηprimal∇xL(xt,λt,µt)

λ̂t ← λt + ηdual [g(x̂t)]+

µ̂t ← µt + ηdual∇µh(x̂t)

(Extrapolation)


xt+1 ← xt − ηprimal∇xL(x̂t, λ̂t, µ̂t)

λt+1 ← λt + ηdual [g(x̂t)]+

µt+1 ← µt + ηdual∇µh(x̂t)

(Update)

Note that, as its name indicates, the ExtraGradientmethod requires the computation
of the Lagrangian gradient and constraints at two different points for each iteration.

Theorem 2.3.2 [Kor76, Thm. 1] (Convergence of ExtraGradient)

Consider the problem of finding a saddle-point of a function ϕ : S × Q → R, and
assume that:

1. The setsQ and S are closed and convex.

2. The function ϕ is convex-concave, differentiable, and its partial derivatives are L
Lipschitz-continuous onQ× S:

||∇uϕ(u,v)−∇uϕ(u
′,v′)|| ≤ L

∥∥∥[u,v]⊤ − [u′,v′]⊤
∥∥∥ ,

||∇vϕ(u,v)−∇vϕ(u
′,v′)|| ≤ L

∥∥∥[u,v]⊤ − [u′,v′]⊤
∥∥∥ .

3. The set of saddle points of ϕ is non-empty.

Then the sequence of iterates generated by the ExtraGradient method with step-size in
(0, 1

L), converges to a saddle-point of ϕ.

Gidel et al. [Gid+19b] extend on a method by Popov [Pop80] which re-uses the gra-
dient evaluated at the previous extrapolation point to reduce the computational cost of
the ExtraGradient method. Gidel et al. [Gid+19b] refer to this technique as extrap-
olation from the past and establish convergence results in the stochastic regime under
assumptions of bounded gradient variance and compactness of the domain.

2.3.6 Quadratic penalty method

Penalty methods are a popular approach for solving constrained optimization problems.
Penalty methods transform the constrained problem into the unconstrained minimiza-
tion of an objective comprising the original objective function and additional terms en-
couraging¶¶ the satisfaction of the constraints.¶¶ For example, by being

positive when the constraint
is violated and zero

otherwise.
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The quadratic penalty method [Cou43] transforms the constrained problem (CMP)
into the unconstrained objective:

LQP(x; ρ) ≜ f(x) +
ρ

2
||h(x)||2 + ρ

2
|| [g(x)]+ ||

2, (2.28)

where ρ > 0 is known as the penalty coefficient.

Naturally, other types of penalty functions can be used. See Nocedal and Wright
[NW06, §17.2] and Bertsekas [Ber16, §5.3] for further details.

The key idea behind the quadratic penalty method is that by increasing the penalty co-
efficient ρ, the minimizer of the penalized objective LQP(·; ρ)will approach the solution
of the original constrained problem (CMP).

Theorem 2.3.3 [NW06, Thm. 17.1] (Convergence of the Quadratic Penalty Method)

Consider a positive sequence {ρt} ↑ ∞, and let xt be a global minimizer of LQP(x; ρ).
Then every limit point of the sequence {xt} is a global minimizer of the problem (CMP).

The assumption of global optimality in the Thm. 2.3.3 too strong in practice. More-
over, when allowing for inexact minimization, the sequence successive minimization
of the quadratic penalty objective may converge to infeasible points, or to a KKT point
which may not be a minimizer [NW06, Thm. 17.2].

Although the quadratic penalty method is extensively used in practice, an undesirable
side-effect of the unbounded increase of the penalty coefficient ρ is the ill-conditioning
of the optimization problem minLQP(·; ρ). The condition number of the Hessian ma-
trix ∇2

xxLQP(·; ρ) grows with ρ, leading to numerical instability and round-off errors.
Bertsekas [Ber16, p. 476] recommends the use of Newton-like methods and double-
precision arithmetic. However, these techniques are not practical in the training of large-
scale deep learning models.

2.3.7 Augmented Lagrangian method

In this section we discuss the Augmented Lagrangian method*** (ALM) [Pow69; Hes69; *** Also known as the
“method of multipliers”HB70]. We refer the interested reader to [Ber82; BM14] for comprehensive treaties.

The ALM alleviates the ill-conditioning challenges of the quadratic penalty method by
maintaining explicit estimates of the multipliers, much like in the GDA scheme.

The augmented Lagrangian function for the problem (CMP) is defined††† as ††† For a derivation of the
ALM as a proximal method
see Nocedal and Wright
[NW06, p. 523].LA(x,λ,µ; ρ) ≜ f(x) +

ρ

2

∥∥∥∥h(x) + µ

ρ

∥∥∥∥2 + ρ

2

∥∥∥∥[g(x) + λ

ρ

]
+

∥∥∥∥2 . (2.29)

The augmented Lagrangian function penalizes the violations modified by the “shifts”
µ
ρ and λ

ρ [BM14]. Note that when µ = 0 and λ = 0, the augmented Lagrangian
function reduces to the quadratic penalty objective.
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We can express the augmented Lagrangian function equivalently as

LA(x,λ,µ; ρ) = f(x) +
1

2ρ
‖µ+ ρh(x)‖2 + 1

2ρ
‖ [λ+ ρg(x)]+ ‖

2. (2.30)

The following theorem‡‡‡ shows that given a local solution x∗ and a sufficiently accu-‡‡‡ Along with its more
realistic version by

Bertsekas [Ber16, Prop.
5.2.3].

rate estimate of themultipliers, theALM problem identifiesx∗ as a strict local minimizer
without requiring unbounded increases in the penalty coefficient.

Theorem 2.3.4 [NW06, Thm. 17.5]

Letx∗ be a localminimumof problem (CMP). Assumex∗ is regular and that the second-
order sufficient conditions from Thm. 2.2.7 hold forλ = λ∗ andλ = µ∗. Then there exists
a threshold value ρ̄ > 0 such that for all ρ > ρ̄, the point x∗ is a strict local minimizer of
LA(x,λ

∗,µ∗; ρ).

Let us turn to the algorithmic components of the ALM. Suppose x̃ is an approximate
minimizer of LA(·,λ,µ; ρ). Therefore, we have that

0 ≈ ∇xLA(x̃,λ,µ; ρ) (2.31a)

= ∇xf(x̃) +
m∑
i=1

[λi + ρgj(x̃)]+∇xgi(x̃) +
n∑
j=1

(µj + ρhj(x̃))∇xhj(x̃)

(2.31b)
= ∇xL(x̃, [λ+ ρg(x̃)]+ ,µ+ ρh(x̃)). (2.31c)

Note that the last equality corresponds to the stationarity KKT conditions (Eq. (2.20)),
with a choice of multipliers λ ← [λ+ ρg(x̃)]+ and µ ← µ + ρh(x̃). In other words,
with said choice of dual variables, the first condition needed for optimality is satisfied
automatically. This motivates the following algorithm:

Algorithm 1 Augmented Lagrangian Method
Input: Initial conditions x0, λ0, µ0, ρ0
1: for t = 0, 1, 2, . . .
2: xt+1 ← Approx. minimizer of LA(x,λt,µt; ρt) (possibly warm-starting at xt)
3: λt+1 ← [λt + ρt g(xt+1)]+
4: µt+1 ← µt + ρt h(xt+1)
5: Pick ρt+1 > ρt according to some heuristic or schedule
6: if a convergence test for problem (CMP) is satisfied:
7: return xt+1, λt+1, µt+1

Bertsekas [Ber16, §5.2] lists several heuristics for updating the penalty coefficient ρ.

In the language of Sections 2.3.4 and 2.3.5, Algo. 1 can be described as an alternating
“primal-dual” scheme, where the primal objective is the augmented (and not just the
regular) Lagrangian function.
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Given our machine learning context, it is of particular interest to consider the case
where the “approximate minimization” in step 2 of Algo. 1 is a single step of gradient
descent. In this case, the primal parameters are updated using a value of the multipli-
ers after a simulated update based on the constraint violations at the current iterate xt,
reminiscent§§§ of the ExtraGradient method. The update on the multipliers in step 3 is §§§ But not equivalent!
based on the new iterate xt+1 (and not an extrapolated estimate thereof).

Formally, the ALM with primal-gradient updates consists of the following steps:
λ̂t ← λt + ηdual [g(xt)]+

µ̂t ← µt + ηdual∇µh(xt)

No primal extrapolation.

(2.32a)


xt+1 ← xt − ηprimal∇xL(xt, λ̂t, µ̂t)

λt+1 ← λt + ηdual [g(xt+1)]+

µt+1 ← µt + ηdual∇µh(xt+1)

(2.32b)

Note that as an alternating primal-dual method, the ALM described in Algo. 1 suffers
the same computational shortcomings of the APD-GDA scheme in the stochastic setting.

2.3.8 Non-differentiable constraints

In this section, we briefly present the idea of proxy-constraints introduced by Cotter
et al. [Cot+19b]. In many applications, requirements may come in the form of a non-
differentiable constraint. For example, fairness constraints may demand that a model
predicts at least a certain threshold of positive outcomes for a minority group [BHN23].

Anaive solution to this issuewould be to replace the non-differentiable constraintwith
a differentiable approximation or surrogate. The use of surrogate losses is widespread in
the machine learning community, as discussed in Section 2.1.1.

However, a naively replacing the constraints by surrogates would lead to saddle-points
that are feasible for the surrogate—but not for the original constraints. The key insight
of Cotter et al. [Cot+19b] is to replace the constraints by surrogates only when it is
actually needed.

Let us consider once more the GDA updates.¶¶¶ Note that, while updating the primal ¶¶¶ This analysis extends to
alternating schemes.variables requires the gradient of the constraints, the dual variables are updated based

on the value of the constraints. Therefore, the Lagrange multipliers can be updated so as
to satisfy the original constraints.
xt+1 ← xt − ηprimal

[
∇f(xt) +

∑m
i=1 λ

(i)
t ∇gi(xt) +

∑n
j=1 µ

(i)
t ∇hi(xt)

]
λt+1 ← [λt + ηdualg(xt)]+

µt+1 ← µt + ηdualh(xt).

(2.33)
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Concretely, the proxy-constraint approach considers the non-zero sum game:
x∗ ∈ argmin

x
Lx(x,λ,µ) ≜ f(x) + λ⊤g̃(x) + µ⊤h̃(x),

λ∗,µ∗ ∈ argmax
λ,µ

Lλ,µ(x
∗,λ,µ) ≜ λ⊤g(x∗) + µ⊤h(x∗),

(2.34)

where g̃ and h̃ are differentiable surrogates or proxy-constraints for the non-differentiable
constraints g and h.

Given the non-zero-sum nature of the game (2.34), it is not possible to findNash equi-
libria (i.e., saddle-points) efficiently. Cotter et al. [Cot+19b] show that weaker solution
concept (which can be found efficiently) is sufficient to guarantee near-optimality and
near-feasibility in expectation.

In Chapters 6 and 8 we demonstrate the practical success of the proxy-constraint ap-
proach in the context of training neural networks with compression and fairness con-
straints. Proxy-constraints are natively supported in Cooper (see Chapter 12).

32



Part II
C O N T R I B U T I O N S





3Prologue to the First Contribution

article details

Jose Gallego-Posada, Juan Ramirez, Akram Erraqabi, Yoshua Bengio and Si-
mon Lacoste-Julien. Controlled Sparsity via Constrained Optimization or: How
I Learned to Stop Tuning Penalties and Love Constraints. This paper was published
at NeurIPS, 2022.* * An earlier version of this

work was presented at the
LatinX in AI workshop at
NeurIPS 2021.author contributions

Jose Gallego-Posada proposed the original idea, contributed to the experiments, led the
writing of the paper and acted as Juan Ramirez’ internship advisor. Juan Ramirez con-
ducted this research as an (undergrad!) intern atMila and led the execution of the exper-
iments. Akram Erraqabi contributed to the experiments, the writing of the paper and
proposed to focus the narrative around the concept of controllability. Juan Ramirez and
JoseGallego-Posadawere themain developers of the codebase. JuanRamirez andAkram
Erraqabi identified the issue and solution to the optimization challenges present in L0-
spare ResNet models†. Jose Gallego-Posada contributed the idea of dual restarts and its † I.e. the need for separate

optimizers between gates
and model parameters.

game-theoretic interpretation as a best-response scheme. Yoshua Bengio provided feed-
back on the final manuscript. Simon Lacoste-Julien provided supervision throughout
the project.

context

The idea for this paperwas inspired by the excellent blogs byDegrave andKorshunova
[DK21b; DK21a] on optimizing multi-objective problems using linear combinations of
the objectives. We wanted to show the advantages afforded by constrained optimization
over the ubiquitous penalization approach in a reasonably complex application for the
machine-learning community. Additionally, we wanted to demonstrate that the con-
strained optimization approach was successful in practice and easily integrated with ex-
isting gradient-based training pipelines for deep-learning models.

Although the paper revolves heavily around the sparsity application, the insights we
present are applicable to othermachine learning problems where a “core” objective (such
as the training loss) is subject to an interpretable “regularization” term (such as the spar-
sity constraints).

As a spin-off of the code developed for this paper, we have released the Cooper library,
which provides several constrained optimization techniques in the PyTorch framework.
We provide a brief overview of the library in Chapter 12.
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4Controlled Sparsity via Constrained
Optimization or: How I Learned to Stop
Tuning Penalties and Love Constraints

abstract

The performance of trained neural networks is robust to harsh levels of pruning. Cou-
pled with the ever-growing size of deep learning models, this observation has moti-
vated extensive research on learning sparse models. In this work, we focus on the task
of controlling the level of sparsity when performing sparse learning. Existing meth-
ods based on sparsity-inducing penalties involve expensive trial-and-error tuning of the
penalty factor, thus lacking direct control of the resulting model sparsity. In response,
we adopt a constrained formulation: using the gate mechanism proposed by Louizos
et al. [LWK18], we formulate a constrained optimization problem where sparsification
is guided by the training objective and the desired sparsity target in an end-to-end fash-
ion. Experiments on CIFAR-{10, 100}, TinyImageNet, and ImageNet usingWideResNet
and ResNet{18, 50} models validate the effectiveness of our proposal and demonstrate
that we can reliably achieve pre-determined sparsity targets without compromising on
predictive performance.

4.1 introduction

The great expressive power of neural networks as function approximators comes with
an inherent need for regularization [BCV13]. Regularization aimed at controlling the
generalization behavior of the network can be realized by a wide range of mechanisms:
explicitly, through the use of additive penalties in training [VC74]; implicitly, via the
choice of optimization algorithm used to train the network [NTS15; CLG01]; or even be
in-grained in the architecture of the network through stochastic computation [Sri+14].

Commonly used neural networks result in overparametrized models, whose perfor-
mance is robust to harsh levels of parameter pruning [HMD16; UMW17; FC19; GEH19].
Thus, regularization techniques aimed at learning sparse models can drastically reduce
the computational cost associated with the learnt model by removing unnecessary pa-
rameters, and retain good performance in the learning task. Given the recent research
trendswhich explore the capabilities of evermore ambitious large-scalemodels [Bro+20],
developing techniques which provide reliable training of sparsified models becomes cru-
cial for deploying them in massively-used systems, or on resource-constrained devices.
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Pruningmethods aim to reduce the storage and/or computational footprint of amodel
by discarding individual parameters [HMD16;MAV17] or groups thereof [Li+17; LAJ19;
Nek+17], while inducing minimal distortion in the model’s predictions. These methods
can be further categorized based on whether the sparse model is obtained while or after
training the model (also known as in-training and post-training sparsification).

Traditional post-trainingmethods rely on heuristic rankings of theweights or filters to
be pruned, often based on parameter magnitudes [LDS90; HMD16]. Despite their sim-
plicity, these methods usually require retraining the weights to maintain high accuracy
after pruning, and thus incur in additional computational overhead. On the other hand,
in-trainingmethods which learn a good sparsity pattern by augmenting the training loss
with sparsity-inducing penalties [LWK18; LAJ19] do not perform fine-tuning, but face
challenges regarding the tuning and interpretability of the penalty hyperparameter.

In this work*, we focus on the task of learning models with controlled levels of spar-* Our code is available at:
https://github.com/

gallego-posada/
constrained_

sparsity

sity while performing in-training pruning. We tackle two central issues of the popular
penalized method of Louizos et al. [LWK18]: 1© tuning the L0-penalty coefficient to
achieve a desired sparsity level is non trivial and can involve computationally wasteful
trial-and-error attempts; 2© in the worst case the penalized method can outright fail at
producing any sparsity, as documented by Gale et al. [GEH19].
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Figure 4.1: Training sparse ResNet18 models on TinyImageNet [LKJ17]. The penalty-based
method (red) shows a stagnating-then-overshooting behavior, making it difficult
to tune. In contrast, our proposed constrained approach (blue) reliably achieves
thedesired target L0-densities. Density denotes the proportion of active gates in themodel.
The diagonal denotes the ideal case in which the achieved density exactly matches the target
density used in the constrained setting. Parameters and MACs are computed for the corre-
sponding test-time purged networks following the procedure described in Appx. A.4; the L0-
density (see Eq. (4.3)) is computed for the train-time model.

Toaddress these limitations, we propose a constrained optimization approach inwhich
arbitrary sparsity targets are expressed as constraints on the L0-normof the parameters.
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4 Controlled Sparsity via Constrained Optimization

Formally, we consider constraints of the type ‖θg‖0 ≤ K , where θg represents a group
g of parameters of the network (e.g. individual layers, or the whole model), and resort to
well established gradient-based methods for optimizing the Lagrangian associated with
the constrained optimization problem.

Adopting this constrained formulation provides several advantages:

• Unlike the multiplicative factor λ of a penalty term, the constraint level ϵg has
straight-forward and interpretable semantics associatedwith thedensity of a block
of parameters θg , i.e. the percentage of active parameters.

• Requiring different density levels for different parameter groups (e.g. lower den-
sity for network modules with a larger computational or memory footprint), sim-
ply amounts to specifying several constraints with levels matching these desired
densities, thus avoiding the costly process of trial-and-error tuning† and rebal- † Appx. A.5 shows that the

tuning challenges of
penalized methods exist
even for simple MLP tasks.

ancing various penalty factors.
• Much like the penalized approach inwhich additional regularizers can be “stacked”

as other additive terms in the objective, new desired properties can be expressed
in the constrained formulation in a modular and extensible fashion as additional
constraints.

• In non-convex problems, the constrained formulation can be strictly more pow-
erful than the penalized approach: there may be constraint levels that cannot be
achieved by any value of the penalty coefficient [BV04, §4.7.4].

The left columnof Fig. 4.1 illustrates the interpretability and controllability advantages
of the constrained approach when training a sparse ResNet18 model on TinyImageNet.
We vary the constraint level (left axis) and the penalty coefficient (right axis) and com-
pare the achieved parameter density at the end of training. Note how the penalized ap-
proach results in an very densemodel (> 80%) across several orders of magnitude of the
penalty factor, and then suddenly drops to below 40% density. This behavior is in stark
contrast with our proposed constrained approach, which consistently achieves the desired
target density, across a wide range of values. See Section 4.5 for further discussion.

The purpose of our paper is to illustrate the feasibility and advantages of using con-
strained formulations in the study of sparse learning. We favor Lagrangian, gradient-
based methods for tackling the constrained optimization problem due to their ease of
use and scalability in the context of machine learning models. Exploring alternative
constrained optimization techniques is an interesting direction for future studies, but
lies beyond the scope of our work.

The main contributions of this work are:
• Building on the work of Louizos et al. [LWK18], we propose a constrained ap-

proach for learning models with controllable levels of sparsity (Section 4.3).
• We introduce a dual restart heuristic to avoid the excessive regularization caused

by the accumulation of constraint violations in gradient-based Lagrangian opti-
mization (Section 4.3).

• Previous studies [LWK18; GEH19] have beenunsuccessful at training sparseResNets
[ZK16] based on L0 regularization without significantly damaging performance.
Wepropose two simple adjustments to the implementation of Louizos et al. [LWK18],
allowing us to overcome these challenges (Appx. A.8).
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• We provide empirical evidence that we can reliably achieve controllable sparsity
across many different architectures and datasets. Moreover, the controlability and
interpretability benefits of the constrained approach do not come at the expense
of achieving competitive predictive performance (Section 4.5).

4.2 sparsity via l0 penalties

Louizos et al. [LWK18] propose a framework for learning sparse models using the L0-
“norm” of the model parameters as an additive penalty to the usual training objective.
The L0-norm counts the number of non-zero entries in the parameter vector, and ignores
the magnitude of said entries. Consider h(x; θ) be a predictor with parameters θ and
a supervised learning problem defined by a dataset ofN i.i.d. pairs D = {(xi, yi)}Ni=1,
a loss function ℓ and a regularization coefficient λpen ≥ 0. Louizos et al. [LWK18]
formulate the L0-regularized empirical risk objective:

R(θ, λpen) = LD(θ) + λpen‖θ‖0 (4.1a)

=
1

N

(
N∑
i=1

ℓ (h(xi; θ), yi)

)
+ λpen

|θ|∑
j=1

1{θj 6= 0} (4.1b)

The non-differentiability of the L0-normmakes it poorly suited for gradient-based op-
timization. The authors propose a reparametrizationθ = θ̃�z, where θ̃ are free (signed)
parameter magnitudes, and z are independent stochastic gates indicating whether a pa-
rameter is active*. The authors model the gates using a modified version of the concrete* The L0-norm of θ is

determined by that of z.
This is because for

commonly used weight
initialization and

optimization schemes,
θ̃ ≠ 0 almost surely.

distribution [MMT17; JGP17], with parameters denoted by ϕ.

This reparametrization allows for gradient-based optimization procedures, while re-
taining the possibility of achieving exact zeros in the parameters values. We provide a
brief overview of the properties of the concrete distribution in Appx. A.1.

Moreover, this stochastic reparametrization induces a distribution over the network
parameters θ. In consequence, the authors propose to re-define the training objective as
the expectation (under the distribution of the gates) of the L0-regularized empirical risk
in Eq. (4.1):

R(θ̃,ϕ, λpen) ≜ Ez | ϕ

[
R(θ̃ � z, λpen)

]
(4.2a)

= Ez | ϕ

[
LD(θ̃ � z)

]
+ λpenEz | ϕ [‖z‖0] (4.2b)

Test-time model. Since the stochastic reparametrization induces a distribution over
models, Louizos et al. [LWK18] propose a protocol to choose a sparse network at test
time. We employ a slightly modified version of their strategy, based on the medians of
the gates (see Appx. A.1.1).

Parameter grouping. Rather than considering a gate for each individual parameter
(which would double the number of trainable parameters), several parameters may be
gathered under a shared gate. We match the setup of Louizos et al. [LWK18] who focus
on neuron sparsity: using 1© one gate per input neuron for fully connected layers; and
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2© one gate per output feature map for convolutional layers. This use of structured spar-
sity results in practical storage and computation improvements since entire parameter
groups (e.g. slice of convolution kernels/activation) can be discarded.

Combining other norms. Louizos et al. [LWK18] show that their reparametrization
can used in conjunction with other commonly used norms for regularization, such as
the L2-norm. One can express Ez|ϕ

[
‖θ̂‖22

]
=
∑|θ|

j=1 P[zj 6= 0] θ̃2j , where θ̂ is a gate-
rescaled version of θ in order to “avoid extra shrinkage for the gates”. Further discussion
on the challenges of combining weight-decay and their proposed reparametrization can
be found in Appx. A.8 and A.9.

4.3 sparsity via l0 constraints

We favor formulating regularization goals as constraints, rather than as additive penalties
with fixed scaling factors. We refer to these two approaches as constrained and penalized,
respectively. Although a ubiquitous tool in machine learning, penalized formulations
may come at the cost of hyper-parameter interpretability and are susceptible to intri-
cate dynamics when incorporating multiple, potentially conflicting, sources of regular-
ization.

4.3.1 Constrained formulation

In contrast to the penalized objective of Louizos et al. [LWK18] presented in Eq. (4.2),
we propose to incorporate sparsity through constraints on the L0-norm. We formulate an
optimization problem that aims tominimize themodel’s expected empirical risk, subject
to constraints on the expected L0-norm of pre-determined parameter groups:

min
θ̃,ϕ

fobj(θ̃,ϕ) ≜ Ez|ϕ

[
LD(θ̃ � z)

]
(4.3a)

s.t. gconst(ϕg) ≜

L0−density︷ ︸︸ ︷
Ezg |ϕg

[‖zg‖0]
#(θ̃g)

≤ ϵg for g ∈ [1 : G], (4.3b)

where g denotes a subset of gates, #(x) counts the total number of entries in x, and xg
denotes the entries of a vector x associated with the group g. See Appx. A.2 for details
on parameter grouping.

Note how the #(θ̃g) factor in the constraint levels allows us to interpret ϵg as the max-
imum proportion of gates that are allowed to be active within group g, in expectation.
We refer to ϵg as the target density of group g. Lowering the target density demands a
sparser model and thus a (not necessarily strictly) more challenging optimization prob-
lem in terms of the best feasible empirical risk. Moreover, for any choice of ϵg ≥ 0, the
feasible set in Eq. (4.3) is always non-empty; while values of ϵg ≥ 1 result in vacuous
constraints.

We highlight one important difference between the constrained and penalized for-
mulations. The penalized approach is jointly optimizing the training loss fobj(θ̃,ϕ) and
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the expected L0-norm gconst(ϕ), due to their additive combination (mediated by λpen).
Meanwhile, the constrainedmethod focuses on obtaining the best possiblemodel within
a prescribed density level ϵ: given two feasible solutions, the constrained formulation in
Eq. (4.3) only discriminates based on the training loss. In other words, we aim to satisfy
the constraints, not to optimize them.

4.3.2 Solving the constrained optimization problem

We start by considering the (nonconvex-concave) Lagrangian associated with the con-
strained formulation in Eq. (4.3), along with the corresponding min-max game:

θ̃∗,ϕ∗,λ∗
co ≜ argmin

θ̃,ϕ

argmax
λco≥0

L(θ̃,ϕ,λco) (4.4a)

≜ fobj(θ̃,ϕ) +

G∑
g=1

λgco (gconst(ϕg)− ϵg) , (4.4b)

where λco = [λgco]
G
g=1 are the dual variables corresponding to the (non-negative) La-

grange multipliers associated with each constraint.

A commonly used approach to optimize this Lagrangian is simultaneous gradient de-
scent on (θ̃,ϕ) and projected (to R+) gradient ascent on λco [LJJ20]:

[θ̃t+1,ϕt+1] ≜ [θ̃t,ϕt]− ηprimal∇[θ̃,ϕ]L(θ̃
t,ϕt,λtco) (4.5a)

λ̂t+1 ≜ λtco + ηdual∇λcoL(θ̃
t,ϕt,λtco) (4.5b)

= λtco + ηdual
[
gconst(ϕ

t
g)− ϵg

]G
g=1

λt+1
co ≜ max

(
0, λ̂t+1

)
(4.5c)

The gradient update for λco matches the value of the violation of each constraint.
When a constraint is satisfied, the gradient for its corresponding Lagrange multiplier
is non-positive, leading to a reduction in the value of the multiplier.

Negligible computational overhead. Just as the penalized formulation of Louizos
et al. [LWK18], the update for θ̃ andϕ requires the gradient of the training loss and that
of the expected L0-norm. Hence, the cost of executing this update scheme is the same
as the cost of a gradient descent update on the penalized formulation in Eq. (4.1), up to
the negligible cost of updating the multipliers.

Choice of optimizers. We present simple gradient descent-ascent (GDA) updates in
Eq. (4.5). However, our proposed framework is compatible with different choices for the
primal and dual optimizers, including stochasticmethods. Throughout our experiments,
we opt for primal (model) optimizers which match standard choices for the different
architectures. A choice of gradient ascent for the dual optimizer provided consistently
robust optimization dynamics across all tasks. Detailed experimental configurations are
provided in Appx. A.10. The evaluation and design of other optimizers, especially those
for updating the Lagrange multipliers, is an interesting direction for future research.
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Oscillations. Thenon-convexity of the optimization problem in Eq. (4.4) implies that
a saddle point (pure strategy Nash Equilibrium) might not exist. In general, this can
lead to oscillations and unstable optimization dynamics. Appx. A.6 provides pointers to
more sophisticated constrained optimization algorithms which achieve better conver-
gence guarantees on nonconvex-concave problems than GDA. Fortunately, throughout
our experiments we observed oscillatory behavior that quickly settled around feasible
solutions. Empirical evidence of this claim is presented in Section 4.5.4.

Extensibility. Our proposed constrained formulation is “modular” in the sense that it
is easy to induced other properties in the model’s behavior beside sparsity (e.g. fairness
[Hoo+19; Cot+19b]) by prescribing them as additional constraints; much like extra ad-
ditive terms in the penalized formulation. However, the improved interpretability and
control afforded by the constrained approach removes the need to perform extensive
tuning of the hyper-parameters to balance these potentially competing demands.

4.3.3 Dual restarts

A drawback of gradient-based updates for optimizing the Lagrangian in Eq. (4.4) is that
the constraint violations accumulate in the value of the Lagrange multipliers through-
out the optimization, and continue to affect the optimization dynamics, even after a con-
straint has been satisfied. This results in an excessive regularization effect, which forces
the primal parameters towards the interior of the feasible set. This behavior can be detri-
mental if we are concerned about minimizing the objective function and satisfying (but
not minimizing!) the constraints.

To address this, we propose a dual restart scheme in which the Lagrange multiplier
λgco associated with a constraint gconst(ϕg) ≤ ϵg is set to 0 whenever the constraint is
satisfied; rather than waiting for the “negative” gradient updates (gconst(ϕg) − ϵg < 0
when feasible) to reduce its value. Formally,

[
λt+1

co
]
g
≜

max
(
0,
[
λtco
]
g
+ ηdual

(
gconst(ϕ

t
g)− ϵg

))
, if gconst(ϕ

t
g) > ϵg

0, otherwise
(4.6)

Dual restarts remove the contribution of the expected L0-norm to the Lagrangian for
groups g whose constraints are satisfied, so that the optimization may focus on improv-
ing the predictive performance of themodel. In fact, this dual restart strategy can be theo-
retically characterized as a best response (in the game-theoretic sense) by the dual player.
The effect of dual restarts in the optimization dynamics is illustrated in Section 4.5.3
and Appx. A.7.

4.4 related work

Min-max optimization. Commonly used methods for solving constrained convex op-
timization problems [BV04; FW56; Jag13] make assumptions on the properties of the
objective function, constraints or feasible set. In this work, we focus on applications
involving neural networks, leading to the violation of such assumptions. We rely on a
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GDA-like updates for optimizing the associated Lagrangian. However, our proposed
formulation can be readily integrated with more sophisticated/theoretically supported
algorithms for constrained optimization of non-convex-concave objectives, such as the
extragradient method [Kor76]. Further discussion on guarantees and alternative algo-
rithms for min-max optimization is provided in Appx. A.6.

Model sparsity. Learning sparse models is a rich research area in machine learning.
There exist many different approaches for obtaining sparse models. Magnitude-based
methods [TF95; HMD16] perform one or more rounds of pruning, by removing the pa-
rameters with the lowest magnitudes. Popular non-magnitude based techniques include
[LDS90; GYC16; MAV17]. Structured pruning methods [Dai+18; Nek+17; LWK18;
Li+17], remove entire neurons/channels rather than individual parameters. More re-
cently, the Lottery Ticket Hypothesis [FC19] has sparked interest in techniques that
provide the storage and computation benefits of sparse models directly during train-
ing [MW19; Evc+20]. However, finding “good” sparse sub-networks at initialization
remains a central challenge for these techniques [Fra+20; Mal+20].

Controllable sparsity. Magnitude pruning [HMD16; Li+17] can achieve arbitrary
levels of sparsity “by design” since it removes exactly the proportion of parameters with
lowest magnitudes in order to match the desired density. However, the magnitude prun-
ingmethod experiences certain shortcomings: 1© retaining performance usually involves
several round of fine-tuning*; 2© it relies on the assumption that magnitude (of filters or* This re-training overhead

makes magnitude pruning
less appealing compared

with in-training
alternatives, since

magnitude pruning is
typically performed given

an already fully trained
model.

activations) is a reasonable surrogate for parameter importance; and 3© it lacks the “ex-
tensibility” property of our constrained formulation: it is not immediately evident how
to induce other desired properties in the model, besides sparsity.

Note that several extensions of the basic magnitude pruning method have been pro-
posed. Zhu andGupta [ZG17] start from a partially or fully pre-trainedmodel and con-
sider a sparsification scheme in which the network density is gradually reduced, while
fine-tuning the model to compensate for any potential loss in performance due to prun-
ing. Wang et al. [Wan+21] start by identifying the parameters to be removed by applying
magnitude pruning on a pre-trained model. However, rather than pruning the model
immediately, the authors propose to fine-tune the model with an adaptive L2-penalty.
The weight of this penalty is increased over time for the previously identified parame-
ters, leading their magnitudes to decrease during the fine-tuning process.

Sparsity via constrained optimization. Previous works have cast the task of learn-
ing sparse models as the solution of a constrained optimization problem. Carreira-
Perpinan and Idelbayev [CI18] consider a reformulation of the constrained optimiza-
tion problem using “auxiliary variables”, and assume that the constraints enjoy an effi-
cient proximal operator. Their empirical evaluation is limited to low-scale models and
datasets.

Zhou et al. [Zho+21] adopt a constrained formulation similar to ours, although based
on a different reparametrization of the gates. The authors tackle the constrained problem
via projected gradient descent by cleverly exploiting the existence of an efficient projec-
tion of the gate parameters onto their feasible set. However, the applicability of their
method is limited to constraints with an efficiently-computable projection operator.
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Lemaire et al. [LAJ19] consider “budget-aware regularization” and tackle the con-
strained problem using a barrier method. Although originally inspired by a constrained
approach, their resulting training objective corresponds to a penalized method with a
penalty factor that requires tuning, in addition to the choice of barrier function.

Other constrained formulations in ML. Constrained formulations can be used to
prescribe desired behaviors or properties in machine learning models. Nandwani et al.
[Nan+19] study the problem of training deep models under constraints on the network’s
predicted labels, and approach the constrained problem in practice through a min-max
Lagrangian formulation. Incorporating these constraints during training allows them
to inject domain-specific knowledge into their models across several tasks in natural
language processing.

Fioretto et al. [Fio+20] consider a wide range of applications spanning from opti-
mal power flow in energy grids, to the training of fair classification models. Their work
demonstrates how Lagrangian-based methods can be complementary to deep learning
by effectively enforcing complex physical and engineering constraints.

Cotter et al. [Cot+19b] train models under constraints on the prediction rates of the
model over different datasets. Note that the sparsity constraints we study in this paper
depends only on properties of the parameters and not on the predictions of the model.
We would like to highlight that the notion of proxy constraints introduced by Cotter et
al. [Cot+19b] can enable training models based on constraints on their actual test time
density, rather than the surrogate expected L0-norm metric.

4.5 experiments

The main goal of our work is to train models that attain good predictive performance,
while having a fine-grained command on the sparsity of the resulting model. In this sec-
tion we present a comparison with the work of Louizos et al. [LWK18]*; we explore the * See a comparison to other

sparsity methods therein,
along with the survey of
Gale et al. [GEH19].

stability and controllability properties of our Lagrangian-based constrained approach,
along with the effect of our proposed dual restarts heuristic. Finally, we present empiri-
cal evidence which demonstrates that our method successfully retains its interpretability
and controllability advantages when applied to large-scale models and datasets.

4.5.1 Experimental setup

Experiment configuration and hyperparameters. Details on our implementation, hy-
perparameter choices and information on the network architectures can be found in
Appx. A.1, A.2, A.3, A.4 and A.10.

Model- and layer-wise settings. We present experiments using two kinds of con-
straints: one global constraint on the proportion of active gates throughout the entire
model; or several local constraints prescribing a maximum density at each layer. Note
that formodels such as ResNet50, the layer-wise setting involves handling 48 constraints.
The experiments below demonstrate that our constrained approach can gracefully han-
dle from a single constraint up to dozens of constraints in a unified way and still
achieve controllable sparsity for each of the layers/model. This level of control is an
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intractable goal for penalized methods: as demonstrated in Appx. A.5, even trying to
tame one constraint via a penalty factor can be prohibitively expensive.

L0-regularization for residual models. ResNets have been a challenging setting for
L0-penalty based methods. Gale et al. [GEH19] trained WideResNets [ZK16] and Res-
Net50 [He+16] using the penalized L0-regularization framework of Louizos et al. [LWK18],
and reported being unable to produce sparse ResNets without significantly degrading
performance.

We propose two simple adjustments that enable us to successfully train WRNs and
ResNets with controllable sparsity, while retaining competitive performance: 1© increas-
ing the learning rate of the stochastic gates; and 2© removing the gradient contribution
of the weight decay penalty towards the gates. Appx. A.8 and A.9 provide detailed analy-
sis and empirical validation of these two modifications. We integrate these adjustments
in all experiments involving residual models below.

Obtaining test-timemodels. Appx.A.4 describes our procedure to transformamodel
with stochastic gates into a deterministic, test-time model. The measurements of re-
tained parameters and MACs (multiply-accumulate operations) percentages reported
in the tables and figures below, are computed for the deterministic, purged, test-time
models.

4.5.2 Proof-of-concept experiments on MNIST

We begin by comparing the behavior of ourmethod with that of Louizos et al. [LWK18]
in the simple setting of training MLP and LeNet5 architectures on the MNIST dataset.
The authors report the size of their pruned architectures found using the penalized for-
mulation. In this section we aim to showcase the controllability advantages of our con-
strained approach. We manually computed the corresponding model-wise or layer-wise
density levels achieved by the reported architectures of Louizos et al. [LWK18] and used
these values as the target density levels for our constrained formulation.

Table 4.1: Achieved density levels and performance for sparse MLP and LeNet5 models trained
onMNIST for 200 epochs. Metrics aggregated over 5 runs. †Results presented byLouizos
et al. [LWK18] withN representing the training set size (see Appx. A.3).

Architecture Grouping Method Hyper-parameters
Pruned Val. Error (%)

architecture best at 200 epochs
(avg± 95% CI)

Model Pen. †λpen = 0.1/N 219-214-100 1.4 –
MLP Const. ϵ = 33% 198-233-100 1.36 1.77± 0.08

784-300-100 Layer Pen. †λpen = [0.1, 0.1, 0.1]/N 266-88-33 1.8 –
Const. ϵ = [30%, 30%, 30%] 243-89-29 1.58 2.19± 0.12

Model Pen. †λpen = 0.1/N 20-25-45-462 0.9 –
LeNet5 Const. ϵ = 10% 20-21-34-407 0.56 1.01± 0.05

20-50-800-500 Layer Pen. †λpen = [10, 0.5, 0.1, 0.1]/N 9-18-65-25 1.0 –
Const. ϵ = [50%, 30%, 70%, 10%] 10-14-224-29 0.7 0.91± 0.05
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4 Controlled Sparsity via Constrained Optimization

Table 4.1 displays the results of our constrained method and the reported metrics
for the penalized approach. Note that, as desired, the pruned models obtained using
the constrained formulation resemble closely the “target architecture sizes” reported by
Louizos et al. [LWK18]. Moreover, our method does not cause any loss in performance
with respect to the penalized approach. This final observation will be confirmed for
larger-scale tasks in later sections.

Note that the goal of this section is to demonstrate that our constrained approach can
achieve arbitrary sparsity targets “in one shot” (i.e. without trial-and-error tuning) and
without inducing any compromise in the predictive performance of the resultingmodels.
Comprehensive experiments forMLP andLeNet5models onMNIST across awide range
of sparsity levels for model- and layer-wise constraints are presented in Appx. A.11.1.

4.5.3 Training dynamics and dual restarts

We now discuss the effect of the dual restarts scheme introduced in Section 4.3.3 on
the training dynamics of our constrained formulation. Fig. 4.2 illustrates the training of
a convolutional network on MNIST under a 30% model-wise density constraint when
using (blue) or not (orange) dual restarts.
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Figure 4.2: Effect of dual restarts for training a LeNet5 on MNIST with a model-wise target den-
sity ϵg = 30% (horizontal dashed line). The accumulation of the constraint violations
in the Lagrange multiplier leads to excessive sparsification when the model satisfies
the constraint. Restarting the Lagrange multiplier allows the model to concentrate
on improving the training loss.

We initialize the Lagrangemultipliers to zero. Therefore, at the beginning of optimiza-
tion there is no contribution from the L0-norm in the Lagrangian (see Eq. (4.4)), and the
optimization focuses on improving the training loss. As the optimization progresses, the
constraint violations are accumulated in the value of the Lagrange multiplier. When the
Lagrange multiplier is sufficiently large, the importance of satisfying the constraints out-
weighs that of optimizing the training loss.† In consequence, themodel density decreases. † Note that the Lagrange

multiplier influences the
update of the model
parameters by dynamically
adjusting the relative
importance of the gradient
of the training loss with
respect to the gradient of the
constraint. In the penalized
method this relative
importance is fixed.

As the model reaches the desired sparsity level, λco stops increasing.

Up until the time at which the model is first feasible, the multiplier value accumulates
the constraint violations (scaled by the dual learning rate). Once the model is feasible,
the constraint violation gconst(ϕg) − ϵ < 0 becomes negative, leading to a decrease in
the Lagrange multiplier. However, at this stage, the Lagrange multiplier is large due to
the accumulated constraint violations. This confers a higher relative importance to the
gradient of the constraints over that of the training loss: the larger multiplier encourages
to reduce the constraints even if they are already being satisfied.
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Our proposed dual restart heuristic reduces the Lagrange multiplier to zero whenever
the constrained is satisfied, allowing the training to focus onminimizing the training loss
faster. Although this heuristic may lead to slightly unfeasible solutions, as demonstrated
throughout our experiments, our models remain consistently below (or close to) the
required L0-density levels.

4.5.4 Stable constraint dynamics

Despite the theoretical risk of oscillatory dynamics commonly associated with iterative
constrained optimization methods, we consistently observed quickly stabilizing behav-
ior in our experiments. Fig. 4.3 shows the density levels throughout training for a layer
of a WideResNet-28-10 trained on CIFAR-10 (right), and the model-wise density of a
ResNet18 trained on TinyImageNet (left).

The desired density levels are successfully achieved over a wide range of targets, and
the constraint dynamics stabilize quickly. These dynamics were consistent across all our
architectures and datasets.
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Figure 4.3: Density levels for a ResNet18 model (left; trained with a model-wise constraint) and
the last sparsifiable layer of aWideResNet-28-10model (right; trainedwith layer-wise
constraints).

4.5.5 Large-scale experiments

We now demonstrate the scalability of our method to more challenging settings: we con-
sider (Wide)ResNet models on the CIFAR-{10, 100}, TinyImageNet [LKJ17] and Ima-
geNet [Den+09] datasets. Comprehensive experiment are provided in Appx. A.11.

CIFAR-{10, 100} and TinyImageNet. Figures 4.1 and 4.4 display the results for a
ResNet18 model trained on Imagenet, and a WideResNet-28-10 trained on CIFAR-10,
respectively. The left column shows the alignment between the achieved and desired
densities (as expected proportion of active gates in themodel). Ourmethod (in blue) pro-
vides a robust control over the range of densities. In contrast, the penalized method (in
red) exhibits an unreliable dependency between the penalty coefficient and the achieved
density: when increasing the coefficient λpen, the achieved density seems to be insensi-
tive to λpen for several orders of magnitude until it starts considerably changing. This
brittle sensitivity profile limits the potential of the penalized method for achieving con-
trolled sparsification.
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Figure 4.4: Training sparse WideResNet-28-10 models on CIFAR-10.

Columns two and three display the number of parameters and MACs (multiply-ac-
cumulate operations) of the resulting purged models, as a proportion of those of the
fully-dense baseline model. Note that, while retaining a similar proportion of parame-
ters, layer-wise constraints lead to a larger reduction in the number of MACs, compared
to the model-wise case. This is because layer-wise constraints induce a strict, homoge-
neous sparsification of all the modules of the network; while the model-wise setting can
allow for a more flexible allocation of the parameter budget across different layers.

ImageNet. We conducted experiments on ImageNet [Den+09] with a ResNet50 ar-
chitecture. We compare with layer-wise structured magnitude pruning [Li+17]‡. The ‡ For each layer, we remove

the filters with the 1− ϵ
lowest L1-norms to achieved
the desired ϵ density.

results are presented in Table 4.2.

Note that experiments with layer-wise constraints correspond to optimization prob-
lems with 48 constraints (one for each sparsifiable layer). We highlight the number of
constraints since tuning such a large number of penalty coefficients is an intractable chal-
lenge when using the penalized method.

Just like the magnitude pruning method, our proposed approach successfully delivers
the desired levels of sparsity in this challenging task. To the best of our knowledge, our
work constitutes the first instance of successfully learning ResNet50 models using the
L0 reparametrization of Louizos et al. [LWK18] for structured sparsity while retaining
high accuracy.

Our results clearly demonstrate that the constrained L0 formulations can obtain large
levels of structured parameter reduction while preserving performance. Table 4.2 shows
a quick degradation in performance for the magnitude pruning method, and highlights
the need for fine-tuning in heuristic-based pruning techniques.
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Table 4.2: ResNet50 models on ImageNet with structured sparsity. “Fine-tuning” for zero epochs
means no fine-tuning.

Target
Method

L0-density Params MACs Best Val. Error (%)

Density (%) (%) (%) After fine-tuning for # epochs
0 1 10 20

− Pre-trained Baseline 100 [25.5M] [4.12 ·109] 23.90 ———————-

ϵ = 90 %
Const. Model-wise 90.36 88.06 91.62 24.68 ———————-
Const. Layer-wise 90.58 87.07 85.97 24.97 ———————-
L1-MP Layer-wise − 85.94 84.99 38.74 25.38 24.69 24.68

ϵ = 70 %
Const. Model-wise 70.78 64.41 76.50 25.53 ———————-
Const. Layer-wise 70.36 61.91 58.59 26.98 ———————-
L1-MP Layer-wise − 62.15 59.85 97.78 29.04 26.80 26.14

ϵ = 50 %
Const. Model-wise 50.18 42.47 58.00 27.51 ———————-
Const. Layer-wise 50.70 43.15 38.25 27.89 ———————-
L1-MP Layer-wise − 43.47 39.76 99.75 36.21 29.98 29.16

ϵ = 30 %
Const. Model-wise 30.31 31.81 42.05 29.65 ———————-
Const. Layer-wise 31.44 30.16 23.74 31.71 ———————-
L1-MP Layer-wise − 29.86 24.80 99.89 56.11 36.90 34.74

4.5.6 Unstructured sparsity

Appx. A.12 contains experiments with unstructured sparsity (i.e. one gate per parame-
ter, rather than per neuron/activation map) for the MNIST and TinyImageNet datasets.
These experiments show that the controllability advantages of our constrained formu-
lation apply in the unstructured regime. Recall that Gale et al. [GEH19] report an ap-
parent dichotomy between sparsity and performance when training (residual) models
with unstructured sparsity using the L0 reparametrization of Louizos et al. [LWK18].
Our experimental results demonstrate that it is in fact possible to achieve high levels of
sparsity and predictive performance.

4.6 conclusion

We resort to a constrained optimization approach as a tool to overcome the controlla-
bility shortcomings faced by penalty-based sparsity methods. Along with a reliable con-
trol of the model density, this technique provides a more interpretable hyper-parameter
and removes the need for expensive iterative tuning. We adopt the L0 reparametriza-
tion framework of Louizos et al. [LWK18] and integrate simple adjustments to remedy
their challenges at training (Wide)ResNet models. Our proposed method succeeds at
achieving the desired sparsity with no compromise on the model’s performance for a
broad range of architectures and datasets. These observations position the constrained
approach as a solid, practical alternative to popular penalty-based methods in modern
machine learning tasks.
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5Prologue to the Second Contribution

article details

Juan Ramirez and Jose Gallego-Posada. L0onie: Compressing COINs with L0-
constraints. This paper was presented at the Sparsity in Neural Networks Workshop,
2022.

author contributions

Jose Gallego-Posada proposed the original idea and led the writing of the paper. Juan
Ramirez and Jose Gallego-Posada contributed equally to the implementation and execu-
tion of the experiments.

context

This paper extends on the ideas presented in Chapter 4 by applying the constrained opti-
mization approach to amore complex task. In this case the sparsity of themodel does not
come from an L0 constraint, but rather from a constraint on the bits-per-pixel (BPP) of
the test-time model. Unlike the constraints considered in Chapter 4, the BPP constraint
is non-differentiable and requires a (slightly) different algorithmic approach. Our exper-
iments constitute a successful application of the proxy-constraint idea by Cotter et al.
[Cot+19b].

Although we demonstrated the superior performance of our method compared to the
basic COIN [Dup+21] approach and a magnitude-pruning baseline, our contribution
did not tackle an important bottleneck in the COIN compression pipeline: the need for
training a separate model for each datum. We believe this significant limitation has been
nicely addressed by the work of Schwarz and Teh [ST22], in which the authors propose
a meta-learning approach with sparse modulations [Per+17] learned per-datum.
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6L0onie:
Compressing coins with L0-constraints

abstract

Advances in Implicit Neural Representations (INR) have motivated research on domain-
agnostic compression techniques. Thesemethods train a neural network to approximate
an object, and then store theweights of the trainedmodel. For example, given an image, a
network is trained to learn themapping frompixel locations to RGB values. In this paper,
we propose L0onie, a sparsity-constrained extension of the COIN compression method.
Sparsity allows to leverage the faster learning of overparametrized networks, while re-
taining the desirable compression rate of smaller models. Moreover, our constrained
formulation ensures that the final model respects a pre-determined compression rate,
dispensing of the need for expensive architecture search.

6.1 introduction

Implicit Neural Representations (INRs) train neural networks mapping coordinates (e.g.
pixel locations) to features (e.g. RGB values) in order to approximate a given object.
INRs have been applied to a wide range of data modalities including audio [Sit+20], im-
ages [Sta07], video [Li+21], 3D scenes [Mes+19] and temperature fields [DTD22]. INRs
provide a new perspective on data compression: rather than dealing with the “raw” fea-
tures of the object, train an INR to approximate the object and store the parameters of
the learned model. COIN [Dup+21] pioneered this approach for image compression.

INR-based compression is a nascent technology. COIN exhibits sub-par performance
and more intensive computational cost compared to domain-specific codecs. Moreover,
it commonly requires architecture search to balance the relationship between the model
capacity and reconstruction quality. Although these techniques are not yet competitive
with established codecs for well-studied domains like audio or image compression, the
greater promise of methods like COIN lies on their ability to provide compression stan-
dards that can be applicable to virtually any data modality.

Recent works [Dup+22; Lee+21; ST22] focus on improving COIN via ameta-learning
approach inwhich a base network is (pre-)trained over a large collection of datapoints, so
that instance-dependent INRs can be found quickly. The task of encoding of individual
instances is casted as a search for modulations [Per+17] on the base architecture.

In this work we concentrate on the interplay between the model size, its representa-
tional capacity and the required training time. In L0onie*, we combine “overparametrized” * Loonie is a colloquial

name for the Canadian one
dollar coin.
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COIN models with the sparse L0-reparametrization of Louizos et al. [LWK18]. This al-
lows us to exploit the power of larger models to achieve better reconstructions, faster;
without having to commit to their undesirable compression rate. We take advantage
of the inherent redundancies in these larger models, and sparsify them during training
in order to achieve a pre-specified compression rate. Our constrained formulation pro-
vides direct control over the resulting compression rate and removes the need for costly
hyper-parameter tuning or architecture search. Fig. 6.1 provides an overview of the com-
pression behavior of of L0onie, COIN and JPEG at different BPP budgets.

Our code is available at: https://github.com/juan43ramirez/l0onie.
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Figure 6.1: Qualitative comparison between L0onie, COIN and JPEG on a picture of a loonie.

6.2 implicit neural representations

For concision, we present a description of INRs using terminology from image process-
ing. However, we highlight that INRs are in principle agnostic* to the “data type” at hand.* Note that a fixed choice of

model architecture and
activation functions might
not be suitable for all data

modalities.

Consider the image I to be compressed as a collection of pixel coordinatesxp ∈ [−1, 1]2
and corresponding RGB pixel intensities yp ∈ [0, 1]3, indexed over a discrete set of pix-
els P .

Consider a family of neural networks fθ : R2 → R3 with parameters θ. An implicit
neural representation (INR) of image I is a solution to the following supervised learning
problem:

min
θ
LI(θ) ≜

∑
p∈P
||fθ(xp)− yp||22. (6.1)

Upon solving the optimization problem, the original image can be (approximately) re-
constructed by evaluating the function fθ at the pixel locationsP . The choice of a family
of models can have a large influence in the reconstruction performance, and is an active
area of research. Recent proposals combine fully-connected models with positional em-
beddings [Tan+20] or sine activation functions [Sit+20].
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6 L0onie: Compressing coinss with L0-constraints

Dupont et al. [Dup+21] propose COIN as a creative approach for image compression:
when compressing an image I, rather than storing RGB values, store the weights of an
INR of I. We follow COIN’s choice of MLPs with sinusoidal activation functions in this
work.

The distortion-rate tradeoff in COIN involves balancing the higher expressive capac-
ity of large models with the detrimental effect of more model parameters towards the
compression rate. Achieving specific compression rates while retaining low distortion
may involve time-consuming architecture search.

6.2.1 Sparsifying INRs

Given that compressing images using COIN already requires more time than standard
methods like JPEG (by several orders of magnitude), dispensing of the need for archi-
tecture search is an important step towards a wider adoption of INR-based compression.
Sparsity techniques are a natural approach to address this issue.

Magnitude pruning can be used to attain specific compression rates, but results in sub-
optimal performance even after fine-tuning (see Section 6.3). The assumptions made
by heuristic-based sparsity methods popular in other machine learning tasks might not
transfer well to the context of INRs.

For instance, magnitude pruning relies on the idea that low-norm parameters should
have a small influence in the final prediction. This has been shown empirically for image
classification tasks where the model predicts a label among a discrete number of classes
[Li+17; GEH19]. We hypothesize that the sub-par performance of magnitude pruning
in our experiments may be due to the use of sine activations in the model and the con-
tinuous nature of the targets.

Louizos et al. [LWK18] propose a framework for learning sparse models by means
of a differentiable reparametrization of the model weights θ = θ̃ � z, where θ̃ are free
(signed) parameter magnitudes, and z are stochastic gates indicating whether a param-
eter is active. The gates follow a hard-concrete distribution [LWK18] with parameters ϕ.
The authors then augment the usual training objective with an additive penalty given by
the expected L0-norm of the gates z, to encourage sparsity in the model.

We propose to combine the MLPs with sinusoidal activations of COIN with this L0
reparametrization. This sparsity perspective opens the door for training “overparametrized”
models which can achieve better performance, faster [ACH18]. Moreover, learning the
sparsity pattern during training avoids having to commit to the undesirably low com-
pression rate of the fully dense model.

The same reparametrization is used in the concurrent work of Schwarz and Teh
[ST22], although stemming from a differentmotivation. While the authors provide valu-
able insights regarding the integration of sparsity within a meta-learning pipeline, they
overlook the challenge of tuning the hyper-parameter λpen, which dictates the relative
importance of the sparsity term. Adjusting λpen to achieve a specific compression rate
can be as prohibitive as performing architecture search [BV04; Gal+22].
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Note that the stochastic re-parametrization induces a distribution over the models.
For practical reasons, it is convenient to have a single model at decoding time. We use
the gate medians ẑ(ϕ) ∈ [0, 1] for constructing said model. Due to the “stretching” in
the hard-concrete distribution, it is possible for the medians to be exactly 0 or 1 and not
just fractional. See Appx. B.1 for more details.

6.2.2 L0-constrained formulation

Gallego-Posada et al. [Gal+22] argue that constrained formulations canprovide greater
hyper-parameter interpretability and controllability when learning sparse neural net-
works, compared to the commonly used penalized approach. The authors consider con-
straints on the expected L0-normof the parameters using the reparametrization of Louizos
et al. [LWK18]. We extend their constrained formulation by using proxy-constraints
[Cot+19b] to directly control the compression rate of the resultingmodel (see Appx. B.2).

We consider the problem of finding a sparse INR for an image I given a constraint on
the compression rate expressed in terms of a budget of τBPP bits-per-pixel. We observed
degraded performancewhen training usingMonte Carlo samples for the stochastic gates,
as done in Louizos et al. [LWK18]. For this reason, we train a deterministicmodel using
the gate medians. This setting coincides with the decoding time model described above.

Formally, we consider the following constrained optimization problem:

min
θ̃,ϕ
LI(θ̃ � ẑ(ϕ)) s.t. BPP(cast(θ̃ � ẑ(ϕ)) ≤ τBPP, (6.2)

where BPP(cast(u)) =
∑

i I[cast(ui) 6= 0] · bits(cast(ui)), and cast(·) quantizes
its input to a specified data type, such as float16.

In practice, we optimize the Lagrangian associated with the problem in Eq. (6.2). Let
λco ≥ 0 be the Lagrange multiplier corresponding to the constraint. The min-max La-
grangian problem is given by:

θ̃∗,ϕ∗, λ∗co ≜ argmin
θ̃,ϕ

argmax
λco≥0

LI(θ̃�ẑ(ϕ))+λco

(
BPP(cast(θ̃ � ẑ(ϕ))− τBPP

)
. (6.3)

We apply simultaneous gradient descent on (θ̃,ϕ) and projected (toR+) gradient ascent
on λco. Note that unlike the penalized formulation in which the multiplicative factor for
the constraint is fixed, here it is dynamically adjusted throughout the optimization. As
detailed in Appx. B.2, the medians face differentiability issues when they saturate at 0
or 1. Thus we employ the expected BPP(θ̃ � z̄(ϕ)) as a proxy-constraint [Cot+19b] for
computing the gradient for the update of the primal parameters.

Our constrained formulation grants a direct control over the compression rate of the
final model. This provides an algorithmic approach to retain the best possible perfor-
mance and achieve a specific target BPP, without having to perform searches over the
hyper-parameter λpen or the model architecture.
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6.3 experiments

We perform experiments on the Kodak image dataset [Kod91] consisting of 24 images
of size 768 × 512. We compare our approach with various image compression tech-
niques: COIN [Dup+21], unstructured magnitude pruning with fine-tuning and JPEG
[Wal92]. Details on the implementation and hyper-parameter configurations can be
found in Appx. B.3. Comprehensive experiments and qualitative comparisons are pre-
sented in Appx. B.4.

We make the difficulty of the task equal across techniques. For example, for a BPP
budget of 0.3, we train a COIN model of dimensions 2-10x[28]-3. Thus, COIN models
are fully dense and have a fixed BPP throughout training. Since L0onie and magnitude
pruning remove some of the parameters, we initialize them from larger models and re-
quire that they deliver a final model with a BPP of 0.3. The experimental settings used
for each budget are provided in Appx. B.3.

Benchmark performance. Fig. 6.2 displays the performance of all methods at vari-
ous BPP budgets. Magnitude pruning consistently under-performs all other approaches,
both immediately after pruning (see Fig. 6.3) and after fine-tuning. This is remark-
able considering that we initialize magnitude pruning from a larger, fully trained COIN
model. L0onie slightly surpasses the performance obtained byCOIN.On the other hand,
although JPEG struggles at high compression rates it clearly dominates at larger BPPs;
and its compression time is negligible in comparison to the other techniques.
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Figure 6.2: PSNR achieved by different techniques over the entire Kodak dataset.

Better performance, faster. Fig. 6.3 shows the PSNR of the compressed model as
a function of the training time. As expected, the larger L0onie model achieves better
reconstructions much faster. However, recall that the original L0onie model has a worse
compression rate. To ensure a fair comparison, we refresh the PSNRmeter for the L0onie
experiments as soon as they satisfy the BPP constraint – this is marked by a drop in the
maximum PSNR metric.

Once the L0oniemodels become feasible, they rapidlymatch and even surpass the per-
formance of COIN. Despite each individual gradient step taking more time for the large
L0onie models, the L0onie approach reaches a higher PSNR, faster than COIN. Note that
for the same wall-time budget as COIN, L0onie achieves comparable or higher PSNR,
while respecting the BPP constraint.
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Figure 6.3: Performance comparison during runtime for L0onie, COIN and magnitude prun-

ing with a target of 0.3 BPP. All methods are trained for 50k steps. Whenever the
L0onie model achieves the desired BPP, we reset its best PSNR meter.

Trainingdynamics. Fig. 6.4 illustrate the training dynamics of all themethods. We in-
cludeCOINandmagnitude pruning experiments as baselines, whose BPP is fixed during
training. These techniques exhibit a similar behavior, with fast initial growth, followed
by a slow saturation period.
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L0-onie COIN MPFigure 6.4: Training dynamics for L0onie, COIN and magnitude pruning on images 7 (top) and
8 (bottom) of the Kodak dataset with a target of 0.3 BPP.

L0onie is initialized from a model with an unfeasible BPP. This causes the Lagrange
multiplierλco to grow at the beginning of training. In turn, the growingmultiplier exerts
a force that leads the optimization to trade-off reconstruction performance in order to
reduce the model’s BPP. Note that this feasibility is obtained relatively early during train-
ing. After the initial drop in PSNR, the now feasible model can focus on optimizing the
reconstruction performance. We observe that once feasible, the PSNR for L0onie model
quickly recovers and surpasses that of COIN.

Note that after reaching feasibility, the BPP statistics barely change for the L0onie
model. Thus optimization is effectively taking place over a particular subnetwork. Prun-
ing the network at this stage and “fusing” the gates and weights could allow for more
efficient training. These gains could be particularly substantial when using structured
sparsity, which was beyond the scope of our work.
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6.4 limitations and future work

Recent work has improved the efficiency of COIN by considering ameta-learning frame-
work [Dup+22; Lee+21]. As demonstrated by Schwarz and Teh [ST22], sparsity and
meta-learning are complementary avenues for improving INR-based compression. De-
spite the controllability advantages of our constrained approach, further research is re-
quired for understanding the optimization dynamics of INRs, both in the constrained
and unconstrained settings.

For simplicity we concentrated on the unstructured sparsity case in this work. How-
ever, the compression gains resulting from structured sparsity (for example, grouping all
weights associated with an input neuron under a shared gate) could be more notorious
and more easily materialized. This is particularly important during training: once the
INR becomes sparse, its unused parameters can be removed to enable faster training.

Finally, our sparsity-constrained formulation can support progressive sparsification
of the model to reach different compression rates. Once a model has achieved a desired
BPP, this very same model can be used in a straightforward manner as a starting point
to obtain INRs with higher compression rates. In contrast, it is not immediately evident
how to achieve this progressive sparsification using vanilla COIN models or penalized
L0 formulations, while reliably controlling the resulting compression rate.

6.5 conclusion

We propose L0onie, a sparse extension of COIN models trained using a constrained
formulation. Our method allows to leverage the faster learning of overparametrized
networks, while respecting a desired compression rate, without requiring costly hyper-
parameter tuning or architecture search.
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article details

Meraj Hashemizadeh∗, Juan Ramirez*, Rohan Sukumaran, Golnoosh Farnadi, * Equal contribution.
Simon Lacoste-Julien and Jose Gallego-Posada. Balancing Act: Constraining
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author contributions

Jose Gallego-Posada proposed the original idea. Meraj Hashemizadeh and Juan Ramirez
led the code implementation. Meraj Hashemizadeh and Juan Ramirez spearheaded the
execution of the experiments with significant contributions from Rohan Sukumaran.
Jose Gallego-Posada and Juan Ramirez led the writing of the paper. Rohan Sukumaran
contributed to the literature review and provided expertise in fairness-related topics.
Jose Gallego-Posada provided hands-on guidance throughout the project. Golnoosh
Farnadi and Simon Lacoste-Julien provided general supervision. Simon Lacoste-Julien
guided Jose Gallego-Posada’s advisory role.

context

The idea for this work arose during the rebuttal phase for the paper presented in Chap-
ter 4. We were familiar with the work of Hooker et al. [Hoo+19] documenting the
disparate impact of pruning. We considered including an additional experiment for our
submission to illustrate the extensibility† advantages of constrained optimization, com- † The ability to modularly

“stack” desired behaviors as
additional constraints, just
like penalized formulations
allow for multiple additive
penalty terms

bining sparsity and disparate impact constraints.

At the time, Jose Gallego-Posada was an intern at Qualcomm Amsterdam supervised
byChristos Louizos. Christos suggested developing this experimentmore carefully rather
than adding onemore experiment to an already-substantial submission. This recommen-
dation eventually led to a year-long investigation on the disparate impact of sparsified
models. We faced many experimental challenges, as existing literature made claims ex-
plaining the disparate impact phenomenon based on factors like the size of a protected
group, which did not necessarily generalize across tasks.

Opting for a slow-science approach was one of the factors enabling us to identify the
lack of generalization present in existing techniques‡ for mitigating disparate impact in ‡ Including our method.
sparsemodels. We believe that documenting this scientific challenge is an important first
step towards the development of robust mitigation methods with good generalization
properties in practical model compression tasks.
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8Balancing Act: Constraining
Disparate Impact in Sparse Models

abstract

Model pruning is a popular approach to enable the deployment of large deep learning
models on edge devices with restricted computational or storage capacities. Although
sparse models achieve performance comparable to that of their dense counterparts at
the level of the entire dataset, they exhibit high accuracy drops for some data sub-groups.
Existing methods to mitigate this disparate impact induced by pruning (i) rely on surro-
gate metrics that address the problem indirectly and have limited interpretability; or (ii)
scale poorly with the number of protected sub-groups in terms of computational cost.
We propose a constrained optimization approach that directly addresses the disparate im-
pact of pruning: our formulation bounds the accuracy change between the dense and
sparse models, for each sub-group. This choice of constraints provides an interpretable
success criterion to determine if a prunedmodel achieves acceptable disparity levels. Ex-
perimental results demonstrate that our technique scales reliably to problems involving
large models and hundreds of protected sub-groups.

8.1 introduction

Current deep learning practice displays a trend towards larger architectures [Bom+21],
as exemplified by popular models such as GPT-4 [Ope23], Llama 2 [Tou+23] andDALL-
E 2 [Ram+22]. Model compression techniques such as pruning [GEH19], knowledge
distillation [HVD15], or quantization [Gho+21] are crucial towards enabling the deploy-
ment of large models across a wide range of platforms, including resource-constrained
edge devices like smartphones.

Despite achieving comparable performance at an aggregate level over the entire dataset,
pruned models often exhibit significant accuracy reduction for some data sub-groups
[Hoo+19; Hoo+20; Pag20]. In particular, under-represented groups can suffer high per-
formance degradation while the overall performance remains unaffected, thus exacer-
bating systemic biases in machine learning models. [Tra+22] refer to this phenomenon
as the disparate impact of pruning.

Existing mitigation methods face challenges in terms of interpretability and scalabil-
ity to a large number of sub-groups. [Tra+22] introduce constraints aiming to equalize
the loss of the sparse model across sub-groups. However, their approach does not ac-
count for the unequal group-level performance of the dense model. Moreover, while the
loss can be a useful surrogate for training, this method addresses the disparate impact
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issue indirectly as it focuses on controlling the loss, rather than group-level changes in
accuracy. Alternatively, [LKJ22] compute per-group importance scores for every model
parameter to determine the weights to be pruned. This approach becomes prohibitively
expensive when the model or the number of sub-groups is large.

In this work, we characterize the disparate impact of pruning in terms of the group-
level accuracy gaps between the dense and sparse models. Additionally, we propose a
problem formulation that directly addresses the disparate impact of pruning by imposing
constraints on the per-group excess accuracy gaps (CEAG). A key advantage of our pro-
posed formulation is that it enjoys interpretable semantics: feasible solutions of our op-
timization problem correspond to models with low pruning-induced disparity. Finally,
our approach introduces a negligible computational overhead (Appx. C.5.1) compared to
(disparity-agnostic) naive fine-tuning of the sparse model, making it applicable to prob-
lems with large numbers of groups, such as intersectional fairness tasks.

Figure 8.1: Top: Adensemodel is sparsifiedwithGMP, and then subjected to either (i) naive fine-
tuning (NFT, using ERM), (ii) equalized loss constraints [Tra+22, EL], or (iii) our ap-
proach (CEAG). Bottom: Positive (resp. negative) excess accuracy gaps (EAGs, §8.3.1)
indicate groups whose performance degradedmore (resp. less) than themodel’s over-
all accuracy change. Models with low disparate impact have EAGs that concentrate
around zero. CEAG consistenly yields models with lower disparity (ΨPW, §8.3.1)
than NFT and EL. For example, NFT yields a 10% hyper-degradation (EAG, ψg) on
group Others. Results correspond to race prediction on UTKFace, with race as group at-
tribute at 90% sparsity. Metrics on the training set and averaged over 5 seeds.

Fig. 8.1 illustrates the reliability of our approach at mitigating the disparate impact of
pruning. We measure disparity in terms of excess accuracy gaps (EAGs, §8.3.1). Naive
fine-tuning yields models that disproportionately affect group Others, and while the
equalized loss formulation mitigates the issue, our formulation consistently reduces the
pruning-induced disparity. See §8.5 for further discussion.
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The main contributions of our work are as follows:

• We formulate a constrained optimization problem (CEAG, §8.3) that directly con-
trols disparate impact by bounding group-level accuracy gaps between the dense
and sparse models.

• We propose an algorithm for solving constrained optimization problemswith non-
differentiable, stochastic constraints (§8.4). We use proxy constraints [Cot+19b] to
address non-differentiablity; and introduce replay buffers (§8.4.2) for handling
noise in the estimation of constraints.

• Our replay buffers improve the training dynamics of the equalized loss formula-
tion proposed by [Tra+22]. The improved dynamics lead to bettermodels in terms
of disparity.

• Our experiments demonstrate that we can reliably mitigate the disparate impact
of pruning across multiple architectures, datasets, and sparsity levels (§8.5). These
results carry over to tasks with intersectional groups, and up to hundreds of con-
straints.

Our code is available at https://github.com/merajhashemi/balancing-act.

Our experimental results indicate that all methods considered in this paper (includ-
ing ours) fail to mitigate pruning-induced disparities on unseen data. To the best of our
knowledge, we are the first to document this generalization challenge. Despite this, our
proposed method constitutes a step in the right direction since our approach is the only
one that reliably mitigates the disparate impact of pruning on the training set. We hope
our empirical observations will motivate further research on improving the generaliza-
tion properties of methods for mitigating the disparate impact of pruning.

8.2 related works

Disparate Impact of Pruning. [Hoo+19; Hoo+20] and [Pag20] document the disparate
impact of pruning where some classes experience a more significant performance degra-
dation compared to others. Existingmethods tomitigate disparity involve fairness-aware
pruning [LKJ22] or formulating constraints on a surrogatemetric such as the loss [Tra+22].

[LKJ22] propose a pruning technique that removesweights based on a heuristicmetric
that relates parameters with their importance for predicting samples from each group.
This approach scales poorly as it requires computing importance scores for each weight
and group.

Tran et al. [Tra+22] apply constraints to match the sparse model’s loss on each sub-
group to the aggregate loss. These constraints are (i) agnostic to the performance of the
dense model on each group and (ii) are based on the loss, which is a surrogate metric for
assessing the accuracy-based disparate impact. Since the disparate impact of pruning
is measured with respect to a reference model, the equalized loss formulation addresses
the problem indirectly. Moreover, loss-based constraints lack the interpretability of the
per-group accuracy changes between the sparse and dense models.
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Fairness and Constraints. Independent of model pruning, fairness in machine learn-
ingmodels is awell studied problem [Dwo+12; DMB16; VR18;Meh+21; Zem+13; ZG22].
Enforcing fairness with constraints has mainly focused on imposing requirements such
as demographic parity, equalized odds, equal opportunity [HPS16], accuracy parity [Aga+18;
Ber+21], or combinations of these properties [Zaf+17; Low+21; Bak+20; Shu+22]. The
disparate impact of pruning is a fairness notion in the context of sparsity that aims to
match the performance of a sparse model to that of a reference dense model.

ConstrainedOptimization. Constrained formulations have gained popularity in dif-
ferent sub-fields of machine learning such as safe reinforcement learning [SAA20], ac-
tive learning [ENR22] and sparsity [Gal+22]. These constrained formulations lead to
stochastic min-max optimization problems, which can be challenging to optimize due
to their non-convexity [LJJ20]. We make use of proxy constraints [Cot+19b] to solve
problems with interpretable but non-differentiable constraints.

Variance Reduction. The stochasticity in gradient estimates introduces additional
optimization challenges [Bez+23]. Variance reduction techniques [Gow+20] have been
employed to improve convergence on stochastic optimization [DBL14], and inmin-max
games [Cha+19]. In this work, we leverage the idea of replay buffers [Mni+13] to reduce
the noise in the estimation of stochastic constraints.

8.3 addressing the disparate impact of pruning via accuracy
gaps

In this section, we propose using accuracy gaps (AGs) to quantify the disparate impact
induced by model pruning. AGs are group-level measurements that quantify changes
in accuracy between the dense and sparse models. As we will see, large discrepancies
in AGs across groups correspond to scenarios where pruning-induced disparity is high.
In §8.3.2, we propose a problem formulation that yields models with low disparity by
explicitly constraining deviations in the group accuracy gaps.

8.3.1 Accuracy gaps

We consider a supervised learning problem on a datasetD = {(xi, yi, gi)}Ni=1 ofN i.i.d
tuples, each comprising features x ∈ X , target class y ∈ [K] and group membership
g ∈ G. The dataset can be partitioned into sub-groups Dg ≜ {(xi, yi, gi) ∈ D | gi = g}
for every g ∈ G.

Let hθ : X → RK be a predictor with parameters θ ∈ Θ. The accuracy of hθ on
a sample set D is A(θ|D) ≜ 1

|D|
∑

(x,y,g)∈D 1{argmax[hθ(x)] = y}. In particular,
A(θ|D) denotes the model accuracy on the entire dataset, while A(θ|Dg) is the model
accuracy on a specific sub-group g.

Given access to a dense pre-trained model, we are interested in the effect of pruning
on the accuracy across sub-groupsDg . In realistic pruning applications the densemodel
may exhibit different accuracies across sub-groups, thus we do not aim to equalize the
accuracy of the sparse model across groups. Therefore, we argue that the accuracies
after pruning should change (approximately) equally across sub-groups.
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8 Balancing Act: Constraining Disparate Impact in Sparse Models

Let θd and θs denote the parameters of the dense and sparse models, respectively. We
define the global accuracy gap ∆(θs,θd) and group accuracy gaps ∆g (θs,θd) as:

∆(θs,θd) ≜ A(θd|D)−A(θs|D), (8.1)
∆g (θs,θd) ≜ A(θd|Dg)−A(θs|Dg) ∀g ∈ G. (8.2)

A positive gap (resp. negative) corresponds to a degradation (resp. improvement) in the
performance of the sparse model with respect to that of the dense model. This corre-
spondence holds both at the global ∆(θs,θd) and group levels ∆g (θs,θd).

Disparate Impact of Pruning. Following our discussion above, we say a sparsemodel
hθs experiences low disparate impact (with respect to a dense model hθd) if the changes
in performance are similar across sub-groups. In other words,

∆g (θs,θd) ≈ ∆g′ (θs,θd) , ∀g, g′ ∈ G. (8.3)

Due to the loss of model capacity caused by pruning, typically ∆(θs,θd) > 0. Thus,
we consider∆(θs,θd) as the reference point for defining the group excess accuracy gaps
(EAGs):

ψg (θs,θd) ≜ ∆g (θs,θd)−∆(θs,θd) , ∀g ∈ G. (8.4)

If ψg (θs,θd) > 0, then g is more negatively impacted by pruning than the overall
dataset. Conversely, ψg′ (θs,θd) < 0 indicates that group g′ was less affected relative to
the overall model degradation.

Note that if ψg = 0, ∀g ∈ G, then it follows that∆g (θs,θd) = ∆g′ (θs,θd) , ∀g, g′ ∈
G, and there is no disparate impact. We quantify the disparate impact of pruning via:

ΨPairWise (θs,θd) ≜ max
g,g′∈G

ψg (θs,θd)− ψg′ (θs,θd) (8.5a)

= max
g∈G

∆g (θs,θd)−min
g′∈G

∆g′ (θs,θd) . (8.5b)

Note that ΨPW ≥ 0 always. Moreover, ΨPW = 0 if and only if we are in an ideal setting
where the accuracy gaps are equal across all groups. However, aiming to constraintΨPW
directly can be difficult in practice (see Appx. C.2.3). Instead, we consider constraints
on each individual group EAG.

8.3.2 Constrained Excess Accuracy Gaps formulation

We propose to impose upper-bounds (with a tolerance level ϵ ≥ 0) on the values of
ψg (θs,θd) ≤ ϵ. Since ϵ ≥ 0, the constraints are effectively only enforced onψg (θs,θd) >
0, corresponding to groups experiencing hyper-degradation in performance (with re-
spect to the average degradation)*. Imposing a lower bound on group EAGs ψg would * Note that the set of

hyper-degraded groups
{g ∈ G |ψg (θs,θd) > 0}
depends directly on the
parameters of the sparse
model θs and thus changes
at every training step.

allow for better control over the resulting disparate impact ΨPW. However, solving the
problem with both of these bounds is challenging due to the small size of the feasible
region relative to the estimation noise in the constraints. Appx. C.2.3 provides further
discussion and motivation regarding the choice to constrain only positive ψg values.
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This choice motivates an operational definition of disparate impact which focuses on
the group with the highest EAG, given by maxg ψg . Bounding this quantity can be
achieved by imposing constraints on every EAG. This gives rise to the following opti-
mization problem with per-group constraints:

(CEAG) argmin
θs∈Θ

L(θs|D)

s.t. ψg (θs,θd) = ∆g (θs,θd)−∆(θs,θd) ≤ ϵ, ∀g ∈ G
(8.6)

where L(θ|D) is the loss of hθ on dataset D, and the tolerance ϵ ≥ 0 is the maximum
allowed EAG.

When ∆(θs,θd) > 0, the constraints require that the performance degradation for
each group be at most the overall model degradation plus the tolerance. Conversely, if
∆(θs,θd) < 0, the constraints prescribe that all group accuracies must increase by at
least the overall improvement, except for an ϵ.

8.3.3 Discussion

By formulating constraints on EAGs, CEAG directly addresses the disparate impact of
pruning and has benefits in terms of interpretability, flexibility, and accountability. See
Appx. C.2 for alternative constrained formulations for addressing the disparate impact
of pruning.

Tackling disparate impact. Existing methods aim to mitigate disparate impact by
enforcing properties on the sparse model while being agnostic to the performance of
the dense model. Since EAGs relate the per-group performance of the dense and sparse
models, we argue that our approach actually addresses pruning-induced disparity, rather
than other fairness notions such as loss equalization as proposed by [Tra+22].

Interpretability. The choice of tolerance level ϵ directly translates to bounds on AGs.
For example, setting ϵ = 1% implies the worst affected class may not lose beyond 1%
accuracy compared to the overall model change. In contrast, it is challenging to set in-
terpretable tolerance levels for constraints based on losses.

Flexibility. CEAG allows for some slack in the disparity of the pruned model, as pre-
scribed by the tolerance ϵ. This flexibility allows incorporating application-specific re-
quirements into the learning procedure. For example, small tolerance values allow en-
forcing strict fairness regulations. Moreover, this flexibility may be necessary in prac-
tice since the reduced capacity of the sparse model can make it impossible to attain
∆g (θs,θd) = ∆ (θs,θd) ∀g ∈ G.

Accountability. Being a constrained approach, establishing feasibility with respect
to CEAG constitutes a clear success criterion to determine if a pruned model achieves
acceptable disparity levels: a model is only admissible if it satisfies the constraints at a
prescribed tolerance level.
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8.4 solving the constrained excess accuracy gaps problem

A popular approach to solve constrained optimization problems such as CEAGin Eq. (8.6)
is to formulate its Lagrangian and optimize the resulting min-max problem:

min
θs∈Θ

max
λ≥0

L(θs,λ) ≜ L(θs|D) +
∑
g∈G

λg (ψg (θs,θd)− ϵ) , (8.7)

where λg ≥ 0 is the Lagrange multiplier associated with the constraint for group g and
λ = [λg]g∈G . We refer to θs as the primal parameters, and to λ as the dual parameters.

Optimizing deep neural networks can be challenging, and generally requires carefully
crafted procedures and extensive hyper-parameter tuning [Cho+19]. We are interested
in re-using standard techniques for optimizing θs. Therefore, we consider a generic op-
timization protocol on θs and gradient ascent on λ, instead of specialized optimization
approaches for min-max games such as extragradient [Gid+19b; Kor76].

8.4.1 Optimization with non-differentiable constraints

A natural next step is to optimize Eq. (8.7) with gradient-based updates. Unfortunately,
this is not possible as the ψg terms are not continuous (since they are accuracy gaps),
and are non-differentiable with respect to θs. Therefore, we must resort to a surrogate
ψ̃g for computing gradients with respect to θs. In contrast, Eq. (8.7) is differentiable
with respect to λ, with gradients corresponding to constraint violations. Thus, the dual
variables can be updated using the non-differentiable constraintsψg . This update scheme
is inspired by the proxy-constraint technique introduced by Cotter et al. [Cot+19b].

θ∗
s ,λ

∗ ∈


argmin
θs∈Θ

Lθ(θs,λ)
∆
= L(θs|D) +

∑
g∈G λgψ̃g (θs,θd)

argmax
λ≥0

Lλ(θs,λ)
∆
=
∑

g∈G λg
(
ψg (θs,θd)− ϵ

)
,

(8.8)

Specifically, we choose surrogates ψ̃g given by the excess (negative) loss gaps: ψ̃g (θs,θd) ≜
−
(
L(θd|Dg)−L(θs|Dg)

)
+
(
L(θd|D)−L(θs|D)

)
. Note that ψ̃g has the same structure

as ψg , but replaces accuracy measurements with negative loss terms. This is a reasonable
choice of surrogate function since drops in accuracy for the sparse model correspond to
increases in loss.

Eq. (8.8) represents a two-player, non-zero-sum game. Rather than replacing the non-
differentiable constraints with their surrogates everywhere, this approach only performs
the replacement when necessary, i.e., for computing gradients for the primal parameters.
Preserving the actual constraints on the dual objective Lλ(θs,λ) is useful as it results in
a problem closer to Eq. (8.7).

Equation (8.8) can be optimized via gradient descent onθs (based onLθ) and gradient
ascent onλ (based onLλ). Alternating gradient descent-ascent (Alt-GDA) updates yield
the following scheme:
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λ(t+1)
g =

[
λ(t)g + ηλ

(
ψg

(
θ(t)
s ,θd

)
− ϵ
)]

+
(8.9)

θ(t+1)
s = θ(t)

s − ηθ

∇θL(θ(t)
s |D

)
+
∑
g∈G

λ(t+1)
g ∇θψ̃g

(
θ(t)
s ,θd

) , (8.10)

where ηθ and ηλ are step-sizes and [ · ]+ = max(·, 0). We initialize the Lagrange mul-
tipliers to λ(0) = 0. Appx. C.1 contains more details on non-convex constrained opti-
mization.

8.4.2 Stochastic constraints and replay buffers

In practice, the problem in Eq. (8.6) is solved by using mini-batch samples from the
dataset to estimate the objective function, the constraints, and their gradients. This pro-
cedure can yield constraint estimates with high variance across mini-batches, especially
for under-represented groups; or for all groups when the number of constraints is large.
In extreme cases, a mini-batch may contain very few samples from a given sub-group,
leading to multiplier updates based on very noisy estimates.

We overcome these issues by estimating constraints based on information across mul-
tiple mini-batches. For calculating AGs, (i) we compute the performance of the dense
model on the whole dataset (once at the beginning of training), and (ii) we estimate the
accuracy of the sparse model from per-sample accuracy measurements on the k most
recent datapoints of each group. We refer to the data structure that stores historic accu-
racies as a replay buffer (RB), given the analogy to the technique used in reinforcement
learning [Mni+13]. The choice of buffer size k introduces a trade-off between reducing
the variance of the constraints, and biasing estimates towards old measurements.

These adjustments reduce variance in the estimation of the constraints, thus yielding
stable updates for the multipliers. This allows us to solve Eq. (8.6) in settings with large
numbers of constraints relative to the choice of batch size. We do not apply variance
reduction on the model updates. For details on our implementation of replay buffers,
see Appx. C.3. For experimental evidence on their benefits, see §8.5.3 and Appx. C.3.1.

8.4.3 Algorithmic details

Algo. 2 presents our approach for solving CEAG. Note that Algo. 2 is applicable to a
broader class of constrained optimization problems with stochastic constraints, includ-
ing the equalized loss formulation of [Tra+22] (see Appx. C.2.1 for details).

Computational Overhead. The constrained approach in Algo. 2 represents a negli-
gible computational overhead compared to fine-tuning the sparse model with empirical
riskminimization. An iteration of Alt-GDA (Eq. (8.9)) requires one forward pass and one
backward pass through the model since the same iterate of θs is used for both the pri-
mal and dual updates. This matches the cost of gradient descent for ERM, except for the
minimal overhead associated with the evaluation of constraints after the forward pass.
Note that, given our choice of surrogate, the gradient of the Lagrangian with respect to
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Algorithm 2 Constrained Excess Accuracy Gap (CEAG)
Input: θ: Initial model parameters, ηθ: Primal step-size, ηλ: Dual step-size, k: Memory

size for replay buffer, ϵ: Tolerance hyper-parameter, B: Batch size, T: Total number
of iterations,Agdense: Accuracy of the densemodel on each group g,Adense: Aggregate
accuracy of the dense model.

1: λg ← 0, ∀g ∈ G {Initialize dual parameters}
2: bufg ← queue(k), ∀g ∈ G {Initialize replay buffer}
3: for iter = 1, . . . ,T do
4: x, y, g← Sample {(xi, yi, gi)}Bi=1 ∼ D {Sample batch from training set}
5: idxg ← (g == g), ∀g ∈ G {Calculate sub-group indices for batch}
6: ŷ← hθ(x) {Compute forward-pass}
7: bufg ← UpdateBuffer(bufg, ŷ, y, idxg) , ∀g ∈ G {Update replay buffer}
8: ψg ← QueryBuffers

(
{bufg}Gg=1, k, {A

g
dense}

G
g=1, Adense

)
{Query buffers}

9: ψ̃g ← ComputeSurrogate(ŷ, y, idxg) , ∀g ∈ G {Compute surrogates}
10: λg ← max{0, λg + ηλ(ψg − ϵ)}, ∀g ∈ G {Update dual params}
11: gradθ ← ∇θ

[
L (θ|(x, y)) +

∑
g∈G λgψ̃g

]
{Compute primal gradient}

12: θ ← PrimalOptimUpdate(ηθ, gradθ) {Update model params}
13: end for
14: return θ

θs is a weighted average of the per-sample loss gradients, which autograd frameworks
can compute as efficiently as∇θL (θs|D). For empirical evidence supporting the claim
that CEAG has negligible computational overhead compared to ERM, see Appx. C.5.1.

Memory Cost. The memory overhead of our approach is negligible in the context of
training deep networks: storing the dual variables requires one float per constraint, and
the replay buffers store only |G| booleans for each one of the k slots in the buffermemory.

8.5 experiments

In this section, we present an empirical comparison between naive fine-tuning, equalized
loss [Tra+22], and our proposed CEAG approach. The main goal of our experiments is
to train sparse models with low pruning-induced disparity. While low disparity may
introduce a trade-off with aggregate performance, we aim to achieve comparable overall
accuracy to mitigation-agnostic methods. We explore the reliability and accountability
of our approach, along with the effect of replay buffers on the constrained optimization
problem. Our experiments demonstrate that ourmethod successfully scales to problems
with hundreds of groups.

8.5.1 Experimental setup

Tasks and architectures. We carry out experiments on the FairFace [KJ21] and UTK-
Face [ZSQ17] datasets, following the works of [LKJ22] and [Tra+22]. Additionally, we
perform experiments on CIFAR-100 [Kri09], a task with a large number of sub-groups.
The choice of target and group attributes for each dataset is specified in Appx. C.4.1. De-
tails on the architectures and pre-trained models are provided in Appx. C.4.3 and C.4.4
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Baseline methods. We compare with three baseline mitigation methods (i) NFT: the
last iterate when fine-tuning the sparse model via ERM, (ii) NFT+ES: the best iterate of
NFT in terms of test accuracy (early stopping), and (iii) EL+RB: our re-implementation of
the equalized loss formulation proposed by [Tra+22], enhanced with replay buffers (see
Appx. C.2.1). The optimization hyper-parameters employed for each mitigationmethod
(including CEAG) are described in Appx. C.4.6.

Model pruning. Previous work has shown that gradual magnitude pruning (GMP)
[ZG17] achieves SOTA aggregate performance on unstructured sparsity tasks [Bla+20].
Because of this (and its simplicity), we employ unstructured GMP on all our tasks. GMP
gradually prunes the model by removing parameters with the smallest magnitude once
every epoch. The remaining weights are fine-tuned in between pruning episodes. We
carry out GMP during the first 15 epochs. Appx. C.4.5 provides further details on our
pruning protocol.

Choice of sparsity levels. For very high levels of unstructured sparsity (over 95%),
[GEH19] observe that pruning has a devastating impact on the overall performance of
ResNet-50 models [He+16]. In contrast, performance remains essentially unaffected for
models with up to 85% sparsity. These observations may not carry over to other archi-
tectures such as MobileNets [San+18], or other ResNets. Nonetheless, our experiments
stick to the [85%, 95%] range, except for FairFace experiments, where we consider 99%
sparsity, akin to FairGrape [LKJ22].

Software. Our implementations use PyTorch 1.13.0 [Pas+19] and the Cooper library
for constrained optimization [Gal+24].

Experimental uncertainty. All metrics reported in our tables and plots follow the
pattern avg± std. Unless mentioned otherwise, all our experimental metrics are aggre-
gated across 5 seeds.

Appx. C.6 presents comprehensive experimental results for multiple tasks and sparsi-
ties.

8.5.2 FairFace and UTKFace

ResNet-34 Models on FairFace. Table 8.1 includes results for FairFace classification at
99% sparsity. We compare the behavior of NFT, NFT+ES, EL+RB, and CEAG. We quote the
results reported for the FairGRAPE technique*, aggregated over 3 seeds.* We do not re-run

FairGRAPE owing to its
high computational cost, see

discussion in Appx. C.5.2

We observe that CEAG attains a feasible model in training (maxg ψg ≤ ϵ), as well as
the smallest maxg ψg both in the training and test sets. This does not come at the cost
of aggregate performance, as all methods achieve a comparable test accuracy of around
65%. We observe that FairGRAPE’s maxg ψg andΨPW are significantly higher than that
of all other methods.

MobileNet-V2 Models on UTKFace. Fig. 8.2 illustrates results for UTKFace with
race as group attribute. CEAG consistently attains feasible models in training, and the
smallest values of maxg ψg in the test set. CEAG attains comparable performance to NFT
and EL+RB in the test set.
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Table 8.1: Race prediction task on FairFace with race as group attribute. CEAG achieves a
maxg ψg within the prescribed threshold. Tol (ϵ) is the tolerance hyper-parameter of
CEAG. We do not specify ϵ for other formulations as they do not admit a tolerance.

Sparsity Method Train Test
Accuracy ΨPW maxg ψg Tol (ϵ) Accuracy ΨPW maxg ψg

99

NFT 76.1± 0.2 3.9± 0.9 2.3± 0.3 – 65.2± 0.4 4.2± 0.5 2.1± 0.5
NFT + ES 74.0± 2.5 7.2± 3.3 4.0± 1.4 – 65.4± 0.4 6.3± 2.6 2.9± 1.3
EL + RB 76.1± 0.1 8.8± 1.3 2.6± 0.2 – 65.1± 0.4 6.0± 1.5 2.4± 0.4
FairGRAPE – – – – 65.1 15.9 10.7
CEAG 76.2± 0.1 3.5± 0.6 1.8± 0.4 ≤ 2% 3 65.2± 0.4 4.3± 0.8 2.0± 0.3
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Figure 8.2: Trade-off between disparity and accuracy for UTKFace race prediction with race
as group attribute. NFT and EL+RB yield models with high disparity. In contrast,
CEAG consistently producesmodels that mitigate the disparate impact of pruning.
CEAG’s gains do not entail a degradation in overall test accuracy. Vertical dashed lines
indicate the tolerance (ϵ) of our method, with colors indicating the sparsity level.

Table 8.2 presents results for UTKFace with intersectional groups (race∩ gender). NFT
andNFT+ES have very high disparitymetrics. In contrast, CEAG attains a feasiblemaxg ψg
and the smallest ΨPW in the training set, for all sparsities. Our approach has worse
aggregate performance than NFT and EL+RB in the train set; however, the test accuracy
of these three methods is comparable.

ForNFT, both Fig. 8.2 andTable 8.2 show significantly higher disparitymetrics in train-
ing when compared to in test. This is an indicator that the sparse model achieves good
performance in training by overfitting to the majority groups and losing a lot of perfor-
mance on the under-represented groups.

8.5.3 Scaling to large numbers of groups

CifarResNet-56 models on CIFAR-100. Table 8.3 contains results for CIFAR-100 clas-
sification at 92.5% sparsity. By having the groups correspond to class labels, constrained
formulations for this experiment have 100 constraints. We include two additional exper-
iments to illustrate the importance of replay buffers: equalized loss (EL), and CEAG (no
RB), both without replay buffers.
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Table 8.2: Race prediction task on the UTKFace dataset with the intersection of race and gender
as group attribute. For instance, if a sample has race Black and gender Female, its group
is Black-Female. CEAG consistently achieves a maxg ψg within the threshold.

Sparsity Method Train Test
Accuracy ΨPW maxg ψg Tol (ϵ) Accuracy ΨPW maxg ψg

90

NFT 98.1± 0.1 11.5± 0.7 10.0± 0.7 – 79.6± 0.5 8.9± 2.3 3.1± 0.5
NFT + ES 90.5± 4.7 49.8± 23.0 44.8± 20.8 – 81.0± 0.2 12.0± 5.3 6.9± 4.8
EL + RB 98.3± 0.2 3.2± 0.6 2.4± 0.6 – 79.4± 0.5 11.4± 0.9 3.0± 1.1
CEAG 96.2± 0.1 2.4± 0.6 1.0± 0.3 ≤ 3% 3 80.2± 0.1 6.0± 2.5 2.3± 1.0

92.5

NFT 95.1± 0.2 34.2± 1.6 30.7± 1.5 – 79.2± 0.2 8.8± 3.2 3.6± 1.3
NFT + ES 91.2± 2.7 53.3± 9.6 48.0± 8.3 – 80.4± 0.4 7.5± 3.4 5.4± 3.1
EL + RB 95.4± 0.3 11.1± 1.5 8.6± 1.4 – 78.7± 0.3 16.3± 3.9 3.3± 0.6
CEAG 93.4± 0.3 3.8± 0.4 2.3± 0.4 ≤ 3% 3 79.5± 0.1 10.8± 2.2 3.3± 1.0

Disparity metrics for EL and CEAG are better when employing replay buffers, both on
the train and test sets. This difference is more notable for EL. We also observe the RBs
improve the training dynamics of the dual variables (Appx. C.3.1). CEAG obtains the best
disparity on the train set. Nonetheless, all approaches have a significant generalization
gap in terms of disparity measurements. We observe that the best accuracy and the
smallest maxg ψg on the test set are obtained by EL+RB.

Table 8.3: CIFAR-100 classification with class labels as protected attribute at 92.5% sparsity. EL is
the equalized loss formulationwithout replay buffers; CEAG (no RB) is similarly defined.

Sparsity Method Train Test
Accuracy ΨPW maxg ψg Tol (ϵ) Accuracy ΨPW maxg ψg

92.5

NFT 99.8± 0.0 3.7± 0.9 3.0± 0.9 – 64.9± 0.4 26.2± 5.2 14.3± 3.4
NFT + ES 99.3± 0.2 6.8± 1.9 5.8± 1.8 – 65.2± 0.4 27.4± 2.3 14.6± 2.0
EL 98.5± 0.1 11.3± 0.9 9.8± 1.0 – 65.3± 0.5 25.8± 2.0 14.1± 1.3
EL + RB 99.5± 0.0 6.7± 1.4 5.7± 1.5 – 65.3± 0.4 24.2± 2.9 13.3± 2.4
CEAG (no RB) 99.6± 0.0 2.6± 0.3 1.7± 0.2 ≤ 2% 3 65.0± 0.4 27.2± 2.6 14.9± 2.5
CEAG 99.6± 0.0 2.4± 0.2 1.6± 0.1 ≤ 2% 3 64.8± 0.3 25.0± 1.9 13.8± 1.2

8.6 discussion

It is important to develop techniques that reliably mitigate the disparate impact of prun-
ing since deploying pruned models can have downstream consequences. We observe
that NFT is unsucessful at doing this, and NFT+ES amplifies the disparity induced by prun-
ing. In contrast, CEAG reduces disparity while achieving comparable aggregate perfor-
mance to NFT. However, we observe that all mitigation approaches may fail to mitigate
disparate impact on unseen data.

Mitigating the disparate impact of pruning. Unlike other mitigation methods, our
approach consistently mitigates the disparate impact of pruning on the training set. We
observe this across a wide range of tasks and architectures. In contrast, other mitigation
approaches generally yield worse maximum degradation maxg ψg . In particular, NFT+ES
yields models with very high disparity.

Accuracy trade-off. CEAG may introduce a trade-off in terms of accuracy in order
to satisfy the disparity requirements. On the train set, we observe a small degradation
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in performance in comparison to NFT, typically of at most 2%; on the test set, CEAG’s
accuracy is comparable to that of NFT.

Reliability. Our approach reliably yields models within the requested disparity levels.
Moreover, CEAG results in the smallest variance of the maxg ψg andΨPW metrics across
seeds.

Generalization. Although CEAG reliably satisfies the constraints on the train set, this
may not transfer to the test set. We highlight that (i) these generalization issues are
present for other mitigation methods, and (ii) our approach generally achieves better
test disparity than the baselines. Improving the generalization of disparity mitigation
methods is an important direction for future research.

8.7 conclusion

In this paper, we explore mitigating the disparate impact of pruning. We formalize dis-
parate impact in terms of accuracy gaps between the dense and sparse models, and pro-
pose a constrained optimization approach formitigating it. Our formulation offers inter-
pretable constraints and allows for algorithmic accountability. Although other methods
can indirectly reduce disparity, our approach reliably addresses the disparate impact of
pruning across a wide range of tasks, while attaining comparable aggregate performance.
In particular, our method successfully scales to tasks with hundreds of sub-groups. De-
spite the fact that currentmitigationmethods exhibit generalization issues, our approach
represents a solid step towards mitigating the disparate impact of pruning.

ethics statement

• Facial recognition. Our paper makes use of datasets that contain face images.
We focus on these datasets as they illustrate the disparate impact of pruning, and
for comparisons with previous work. We would like to highlight that although
our method focuses on reducing the disparate impact across groups, we do not
endorse the use of our algorithm in facial recognition systems.

• Data annotation. We use the UTKFace [ZSQ17] and FairFace [KJ21] datasets in
this work. These datasets include annotations for sensitive demographic attributes
such as race, gender, and age. However, it is essential to recognize that these an-
notations represent normative ways of perceiving gender, race, and age, and we
do not endorse or promote these normative categorizations.

• Ethical sourcing of data. We don’t endorse using datasets where the data may not
have been ethically sourced or the workers/subjects involved in the data collection
process are not fairly compensated.

• Fairness notions. We explore a specific notion of fairness in this paper: the dis-
parate impact of pruning. Our framework can be extended to other fairness no-
tions by incorporating additional constraints. However, certain notions of fairness
are incompatible with each other, and a “fair” model in one definition could be
“unfair” with respect to another [FSV21]. Therefore, our method should not be
considered a solution to all notions of fairness.
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• Disparate impact of pruning. In this paper, we propose a constrained optimiza-
tion technique that mitigates the disparate impact of pruning and successfully
solve the problem on the training data. Unfortunately, like all other surveyed tech-
niques, we observe significant challenges atmitigating disparate impact on unseen
data. We advise practitioners to consider the implications of these generalization
challenges when deploying sparse models in real-world systems.

• Deploying pruned models. We hope our paper brings about an important dis-
cussion on the implications of deploying pruned deep learning models in edge
devices. As shown in this work, despite the application of mitigation techniques,
pruning can exacerbate systemic biases. In particular, given the generalization
issues across mitigation methods, it could cause unintended consequences when
used in commercial applications.

reproducibility statement

We provide our code*, including scripts to replicate the experiments in this paper. The* Our code is available at
https://github.com/

merajhashemi/
balancing-act

pseudo-code of our algorithm is described in Algo. 2. Experimental details, as well as
the hyper-parameters used in our experiments, are included in Appx. C.4. Our imple-
mentation uses the open-source libraries PyTorch [Pas+19] and Cooper [Gal+24].
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context

Having established the advantages of constrained formulations for enforcing complex
behaviors in machine learning models, the current paper focuses on improving the tech-
niques used to solve the constrained problems themselves. After all, said advantages are
moot† if solving the constrained optimization problems is impractical. † and the constrained

viewpoint is unlikely to be
widely adopted...This research was motivated by observations made in Chapter 4 on the (sometimes

undesirable) dynamics of gradient-ascent for updating the Lagrange multipliers in con-
strained optimization problems. The dual restarts scheme presented in Section 4.3.3 is a
partial remedy to these challenges andwas successful in the L0-sparsity task, but unfortu-
nately does not generalize to equality constraints or stochastically-estimated constraints.

We identified that the issue lay in the lack of adaptivity in themultiplier updates. Thus,
we decided to analyze whether generic adaptive single-objective optimization methods
like Polyak, Nesterov or Adam would be sufficient to address these issues. Our explo-
ration led to a negative answer, and decanted in favor of the PI approach. Note that
the motivation for our work stems from a complementary perspective to the work of
Stooke et al. [SAA20] as they focus exclusively on PID-based techniques. Notably, we
were able to show that our proposed νPI algorithm encompasses both the PID, Polyak
and Nesterov methods as special cases.
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abstract

Constrained optimization offers a powerful framework to prescribe desired behaviors in
neural network models. Typically, constrained problems are solved via their min-max
Lagrangian formulations, which exhibit unstable oscillatory dynamics when optimized
using gradient descent-ascent. The adoption of constrained optimization techniques in
the machine learning community is currently limited by the lack of reliable, general-
purpose update schemes for the Lagrange multipliers. This paper proposes the νPI al-
gorithm and contributes an optimization perspective on Lagrange multiplier updates
based on PI controllers, extending the work of Stooke et al. [SAA20]. We provide theo-
retical and empirical insights explaining the inability of momentum methods to address
the shortcomings of gradient descent-ascent, and contrast this with the empirical suc-
cess of our proposed νPI controller. Moreover, we prove that νPI generalizes popular
momentum methods for single-objective minimization. Our experiments demonstrate
that νPI reliably stabilizes the multiplier dynamics and its hyperparameters enjoy robust
and predictable behavior.

10.1 introduction

The need to enforce complex behaviors in neural network models has reinvigorated the
interest of themachine learning community in constrained optimization techniques. Re-
cent applications include fairness [Cot+19b; Zaf+19; Fio+20; Has+24], sparsity [Gal+22],
active learning [ENR22], reinforcement learning [SAA20; FG21] and model quantiza-
tion [HER23].

Algorithmic approaches based on the Lagrangianmin-max representation of the origi-
nal constrained optimization problem [BV04, §5] are commonly preferred in the context
of neural networks since (i) they are amenable to inexact, gradient-based optimization
[Ber16, §5.2], (ii) making it easy to incorporate constraints into existing pipelines for
unconstrained optimization [Cot+19b; Gal+24], and (iii) they do not require special
structure in the objective or constraint functions (such as convexity or efficient projec-
tion onto the feasible set [NW06]).

Despite their wider applicability, solving Lagrangian problems involving neural net-
works is challenging as it simultaneously entails the difficulties of nonconvex optimiza-
tion on large-scalemodels [BCN18], and the potential for instability and oscillations due
to the adversarial min-max nature of the Lagrangian [SAA20].
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Figure 10.1: Dynamics for different dual optimizers on a hard-margin SVM problem
(Eq. (10.12)). Amongst the tested methods, νPI is the only method to successfully
converge to the optimal dual variables. Each optimizer uses the best hyperparameters
found after a grid-search aiming to minimize the distance to the optimal λ∗ after 5.000 steps.
For improved readability, the plot shows the first 3.000 steps. Constraint 64 corresponds to a
support vector. All methods achieved perfect training accuracy.

Lagrangianproblems are commonly optimized using some variant of gradient-descent
ascent (GDA) [AHU58]. Despite local convergence results in idealized settings [LJJ20;
Zha+22], the optimization dynamics of GDA typically exhibit instabilities, overshoot or
oscillations [PB87; Gid+19a; SAA20; Gal+22].

Alleviating the shortcomings of GDA on Lagrangian problems is an important step
towards wider adoption of constrained optimization in deep learning. Recently, Stooke
et al. [SAA20] proposed a solution based on a PID controller [ÅH95] for updating the La-
grangemultipliers in safety-constrained reinforcement learning problems. Ourmanuscript
expands on their work by providing an optimization-oriented analysis of νPI (Algo. 3),
a related PI controller that incorporates an exponential moving average on the error.

Fig. 10.1 illustrates how our proposed νPI controller successfully dampens the oscil-
lations on a hard-margin SVM task, achieving fast convergence to the optimal Lagrange
multipliers. In contrast, a wide range of popular methods for single-objective minimiza-
tion exhibit unstable, oscillatory dynamics and fail to converge in this task. See §10.5.1
for further details on this experiement.

Contributions: 1©We introduce the νPI algorithm (§10.4) and prove that νPI gen-
eralizes popular momentum methods like Polyak and Nesterov (Thm. 10.4.1), as well
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as traditional PI controllers. 2©We provide conceptual insights explaining how νPI im-
proves the dynamics of the Lagrange multipliers: §10.4.3 presents a qualitative analysis
of the updates executed by the νPI algorithm in contrast to gradient ascent; in §10.4.4 we
study the spectral properties of the continuous-time system. 3© In §10.4.5, we provide a
heuristic to tune the new hyperparameter κp of the νPI algorithm; we also demonstrate
that it has a monotonic effect in the damping of oscillations. 4© Our experiments on
hard-margin SVMs, sparsity tasks using ResNets, and algorithmic fairness demonstrate
that νPI leads to improved stability and convergence.

Code: Our code is available at https://github.com/motahareh-sohrabi/nuPI.

Scope: Due to the highly specialized techniques used for training neural networks
[Dah+23], in this work we concentrate on iterative schemes that do not modify the op-
timization protocol used on the model parameters. In other words, we restrict our at-
tention to update schemes on the Lagrange multipliers only, which allows us to reuse
the optimizer choices for the (primal) model parameters as used in the unconstrained
setting.

10.2 related works

Constrained optimization. We are interested in Lagrangian methods [AHU58] that
allow tackling general (nonconvex) constrained optimization problems with differen-
tiable objective and constraints. Classical constrained optimization [NW06; Ber16] tech-
niques include projection methods [Ber76], barrier methods [Dik67], and methods of
feasible directions [FW56; Zou60]. These approaches usually make assumptions on the
structure of the problem, such as convexity of the objective or constraints, the existence
of an efficient projection operator onto the feasible set, or access to a linearminimization
oracle. Such assumptions restrict their applicability to deep learning tasks. Other popu-
lar techniques such as penalty methods [NW06] and the method of multipliers [Ber75],
apply to general nonconvex problems, but are outside the scope of this work.

Min-max optimization. The Lagrangian formulation of a nonconvex constrained op-
timization problem leads to a nonconvex concavemin-max problem. Under idealized as-
sumptions, gradient descent-ascent has local convergence guarantees for said problems
[LJJ20], but may exhibit oscillations [PB87; Gid+19b]. Under stronger assumptions, ex-
tragradient [Kor76] and the optimistic gradient method [Pop80] converge at a nearly
optimal rate [MOP20a]. These methods, as well as Polyak with negative momentum
[Gid+19a] and PID controllers [SAA20], have been shown to dampen the oscillations of
GDA. However, negative momentum may be suboptimal for strongly convex-strongly
concave min-max problems [ZW21].

Our work focuses on the dynamics of Lagrangian games. We provide insights on why
popular techniques for minimization may exacerbate oscillations and overshoot, and
why PI controllers can be effective at damping oscillations. Our proposed method νPI
is a generalization of both (negative) momentum and the optimistic gradient method.

PID controllers and optimization. An et al. [An+18] studied PID control for train-
ing machine learning models by considering the negative loss gradient as the error sig-
nal to the controller. PID controllers have been shown to generalize gradient descent
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[HL17] and momentum [Rec18]. Stooke et al. [SAA20] and Casti et al. [Cas+23] have
highlighted the effectiveness of controllers at optimizing constrained optimization tasks.

In this work, we propose a PI-like update rule for the dual variables in a Lagrangian
min-max game. We prove our algorithm generalizes momentum methods and we pro-
vide conceptual insights to support the empirical effectiveness of PI controllers in reduc-
ing oscillations and overshoot in the constrained optimization dynamics. In Appx. D.1,
we elaborate on the distinctions between our work and existing research on PID con-
trollers for optimization.

10.3 lagrangian optimization

Consider a constrained optimization problem with m inequality and n equality con-
straints, represented by functions g : X → Rm and h : X → Rn, respectively:

min
x
f(x) subject to g(x) ≤ 0 and h(x) = 0. (10.1)

Wedonotmake any assumptions on the functions f , g, andhbeyond almost-everywhere
differentiability. We refer to the values of g and h as the constraint violations. In partic-
ular, we are interested in optimization problems where x corresponds to the parameters
of a neural network, leading to objective and constraint functions that may be noncon-
vex. This typically precludes the use of “classical” constrained optimization methods, as
those discussed in §10.2.

The Lagrangianmin-max problem associated with the constrained optimization prob-
lem in Eq. (10.1) is given by:

min
x

max
λ≥0,µ

L(x,λ,µ) ≜ f(x) + λ⊤g(x) + µ⊤h(x), (10.2)

where λ and µ are vectors of Lagrange multipliers associated with the inequality and
equality constraints, respectively. Eq. (10.2) constitutes a nonconvex-concave zero-sum
game between x (known as the primal player) and {λ,µ} (known as the dual player).
We are interested in algorithmic approaches that identify saddle points of the Lagrangian
L(x,λ,µ) as these correspond to constrained optima.

In general, Lagrangian-based approaches do not constitute feasible methods (i.e. visit-
ing only feasible iterates). We judge amethod’s success based on its asymptotic feasibility,
or at the end of a pre-determined optimization budget.

Simultaneous updates. The simplest algorithm to solve the problem in Eq. (10.2) is
simultaneous gradient descent-ascent (GDA) [AHU58]:

µt+1 ← µt + ηdual∇µL(xt,λt,µt) = µt + ηdual h(xt) λ̂t+1 ← λt + ηdual∇λL(xt,λt,µt) = λt + ηdual g(xt)

λt+1 ← ΠRm
+
(λ̂t+1) = max

(
0, λ̂t+1

)
xt+1 ← xt − ηprimal∇xL(xt,λt,µt),
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where the middle two equations execute a projected gradient-ascent step enforcing the
non-negativity of the multipliers λ.

To simplify notation, we will group the dual variables as θ = [λ,µ]⊤ and the con-
straints c(x) = [g(x),h(x)]⊤ which yields the concise Lagrangian problem:

min
x

max
θ∈Rm

+×Rn
L(x,θ) ≜ f(x) + θ⊤c(x) (10.3)

Note that the primal update direction∇xL is a linear combination of the objective and
constraint gradients—which can be efficiently computed using automatic differentiation,
without storing∇f and J c* separately. On the other hand,∇θL = c(x), and thus the * J f ≜

[
∇f1, · · · ,∇fp

]
∈ Rd×p denotes the
(transpose) Jacobian matrix
of a function f : Rd → Rp.

GDA update on the multipliers corresponds to the integration (i.e. accumulation) of
the constraint violations over time. We highlight that the cost of updating the Lagrange
multipliers is typically negligible relative to the cost of computing f and c.

Alternating updates. Prior work has demonstrated the advantages of alternating
updates in min-max optimization: Zhang et al. [Zha+22] established that alternating
GDA achieves a near-optimal local convergence rate for strongly concave-strongly con-
vex problems (strictly better than simultaneous GDA); Gidel et al. [Gid+19b] showed
that alternating GDA leads to bounded iterates on smooth bilinear games, as opposed
to divergence for simultaneous updates. Besides the improved convergence and stability
benefits, alternating updates are particularly suitable for Lagrangian games from a com-
putational standpoint due to the linear structure of the Lagrangian with respect to the
dual variables. Concretely, consider the alternating update scheme: θ̂t+1 ← θt + ηdual∇θL(xt,θt) = θt + ηdual c(xt)

θt+1 ← ΠRm
+×Rn(θ̂t+1)

xt+1 ← xt − ηprimal∇xL(xt,θt+1)

= xt − ηprimal (∇f(xt) + J c(xt)θt)

(10.4)

The alternating updates in Eq. (10.4), only require computing f(xt) and c(xt) once,
just as when performing simultaneous updates. In a general zero-sum game, where
L(xt,θt) does not decouple as in the Lagrangian case, the second part of the alterna-
tion might require re-evaluating L(xt,θt+1) entirely. However, note that thanks to the
affine structure of Lwith respect to θ, the update on x can be calculated efficiently with-
out having to re-evaluate f or c.

These theoretical and practical advantages motivate our decision to concentrate on
alternating update schemes like Eq. (10.4) for solving the problem in Eq. (10.3) in what
follows.

Practical remarks. In practice, updates on the primal variables require more sophis-
ticated methods (with intricate hyperparameter tuning) than the plain gradient descent
update presented in Eq. (10.4) to achieve good performance, including any number of
highly specialized procedures developed for training neural networks [Dah+23].
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Moreover, for certain applications, a training pipeline designed to minimize a single,
unconstrained objectivemight be in place. In these cases, it is desirable to develop update
schemes for the Lagrange multipliers that allow for seamlessly incorporating constraints
into themodel development pipelinewithout having to engineer from scratch a new recipe
for training the model.

In this paper, we concentrate on different update schemes for the Lagrangemultipliers
and assume that a well-tuned optimizer for the model parameters is available.

Shortcomings of gradient ascent. As mentioned previously, gradient ascent (GA)
on the Lagrange multipliers corresponds to accumulating the observed constraint vio-
lations over time. For simplicity, let us concentrate on a single inequality constraint
c(x). Whenever the constraint is being violated (resp. satisfied), the violation is positive
c(x) > 0 (resp. negative) and thus the value of the correspondingmultiplier is increased
(resp. decreased) by ηdualc(x). Recall that the projection step ensures that the inequality
multipliers remain non-negative.

Therefore, the value of the multiplier depends on the entire optimization trajectory
through the value of the observed violations. In particular, after a long period of in-
feasibility, the value of the multiplier will be large, biasing the gradient ∇xL towards
reducing the violation and thus improving the feasibility of the model.

An insufficient increase of the multiplier will cause the constraint to be ignored, while
an excessively large value of the multiplier will lead the constraint to be enforced beyond
the prescribed constraint level. The latter behavior can also occur if themultiplier fails to
decrease sufficiently fast once the constraint is satisfied. Repeated cycles of insufficient
or excessive change in the multiplier manifest in ignoring or overshooting, thus forming
oscillations. See Figs. 10.1 and 10.2 for illustrations of these behaviors.
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Figure 10.2: Constraint dynamics for GA, Polyak and νPI in a sparsity task (§10.5.3). Con-
strained optimal solutions for this problem lie at the boundary of the feasible set.
The excessive growth in the value of the multiplier for GA causes the constraint to
overshoot into the interior of the feasible set. The improved multiplier updates of
the νPI algorithm remove the overshoot in the constraint and multiplier.

In short, an ideal update rule for the multiplier would behave adaptively, based on
the observed violations throughout the execution of the optimization. This begs the
question of whether existing adaptive optimization such as Polyak, Nesterov and Adam
would reliably resolve these issues. Sections 10.4 and 10.5 provide a negative answer to
this question.
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Dual restarts. Gallego-Posada et al. [Gal+22] proposed an approach to mitigate
the overshoot in inequality constraints called dual restarts: once a constraint is strictly
satisfied, its associated dual variable is reset to zero. This corresponds to a best response
(in game-theoretic terms) of the dual player. Dual restarts prevent excessive enforcement
of constraints, which can degrade the achieved objective function value.

However, dual restarts are not suitable for general constrained optimization problems
since they rely on determining the satisfaction of the constraint exactly. Constraint esti-
mates may (wrongly) indicate strict feasibility due to (i) stochasticity in their estimation,
(ii) numerical precision errors making active constraints appear strictly feasible, or (iii)
a “temporary” strict satisfaction of the constraint. Fig. 10.1 illustrates the undesirable
dynamics caused by dual restarts when applied to an SVM task in which the support
vectors correspond to strictly active inequality constraints.

In §10.4, we show that νPI mitigates the overshoot of inequality constraints, with ad-
ditional benefits: (i) controllable degree of overshoot (governed by the κp hyperparame-
ter), (ii) compatibility with equality (and strictly feasible inequality) constraints, and (iii)
damping of multiplier oscillations.

10.4 νpi control for constrained optimization

Following Stooke et al. [SAA20], we consider the learning of an optimal feasible model
solving Eq. (10.1) as a dynamical system. Thus, we can think of the update rule for the
multipliers as a control algorithm that aims to steer the system toward feasibility. We
emphasize that we are not trying to control general dynamical systems, but rather sys-
tems that arise from partial, inexact minimization (e.g. gradient-based updates) on a
min-max Lagrangian game. In other words, we assume that xt−1 7→ xt is updated so
as to minimize the current Lagrangian L(·,θt). Fig. 10.3 illustrates the control pipeline
we consider throughout this work.

Lagrangian dynamics
approx. argmin

x
L(x,λt,µt) ≜

f(x) + λ⊤
t g(x) + µ⊤

t h(x)

Constraint
measurement

Inequality Controller
λ̂t+1 = νPI (λt, g(xt),λ0)

Equality Controller
µt+1 = νPI (µt, h(xt),µ0)

Projection
≥ 0

xt

λ̂t+1λt+1

µt+1

h(xt)

+

g(xt)

+

Error
h(xt)− 0

Target
level: 0

−

Error
g(xt)− 0

Target
level: 0
−

Figure 10.3: νPI control pipeline for updating the Lagrange multipliers in a constrained opti-
mization problem. We consider the update on the primal variables as a black-box
procedure that receives the multipliers λt and primal variables xt−1 as input, and
returns an updatedxt.The multiplier update is executed by the controller, using the
constraint violations as the error signal.
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An assumption entailed by the control perspective in Fig. 10.3 is that an increase (resp.
decrease) in the control variable (the Lagrange multipliers θt) leads to a decrease (resp.
increase) in the controlled quantity (the constraint violations c(xt)). This assumption
holds for constrained optimization problems since an increase in themultipliers leads the
primal minimization of the Lagrangian to focus on reducing the value of the constraints
(as mentioned during the discussion of gradient descent-ascent dynamics in §10.3 ).

Note that our black-box assumption on the nature of the primal update allows for an
arbitrary choice of optimizer for minimizing L(·,θt). After obtaining an updated pri-
mal iterate xt, the new constraint violations g(xt) and h(xt) are measured and used as
the error signals for the inequality- and equality-constraint controllers, yielding updated
multipliers θt+1. The projection block ensures the non-negativity of the multipliers for
inequality constraints.

10.4.1 νPI algorithm

Our main algorithmic contribution is the multiplier update scheme presented in Algo. 3.
This is a simple generalization of a PI controller (i.e. a PID controller [ÅH95] with κd =
0) by including an exponential moving average (of the error signal) in the proportional
term. Indeed, the traditional PI controller is recovered when ν = 0.

Algorithm 3 νPI update
Args: EMA coefficient ν, proportional (κp) and integral (κi) gains; initial conditions
ξ0 and θ0.
1: Measure current system error et
2: ξt ← νξt−1 + (1− ν)et {for t ≥ 1}
3: θt+1 ← θ0 + κpξt + κi

∑t
τ=0 eτ

The νPI update can be equivalently expressed in terms of a recursive update (see
Thm. D.2.1 in Appx. D.2) as:

θ1 = θ0 + κie0 + κpξ0 (10.5)
θt+1 = θt + κiet + κp (ξt − ξt−1) for t ≥ 1. (10.6)

10.4.2 Connections to optimization methods

When the error signal corresponds to the negative gradient of a cost functionet = −∇ft,
Algo. 3 has straightforward equivalences with common minimization methods. For ex-
ample, νPI (ν = 0, κp = 0, κi) is equivalent to GD (α = κi) [SAA20; LRP16; An+18].
When ν = 0 and κp = κi = α, νPI recovers a single-player version of the Optimistic-
Gradient (OG) method [Pop80], with step-size α. When ν = 0, but κp and κi are
allowed to differ, νPI coincides with the generalized OG studied by Mokhtari et al.
[MOP20b]. Since we use νPI for updating the multipliers, we phrase the updates in
Algo. 3 based on a maximization convention.

Moreover, our proposed algorithm νPI generalizes popular momentum methods
such as Polyak—also known as HeavyBall—[Pol64] and Nesterov [Nes83]*. This con-* We consider a variant of

the Nesterov method that
uses a constant momentum

coefficient.
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10 On PI controllers for updating Lagrange multipliers in constrained optimization

nection, stated formally in Thm. 10.4.1, will allow us to understand (Section 10.4.3) why
traditional momentum methods are insufficient to address the shortcomings of gradient
ascent for Lagrangian optimization.

We take advantage of theUnifiedMomentum (α, β, γ) framework introduced by Shen
et al. [She+18] to concisely develop a joint analysis of Polyak(α, β) = UM(α, β, γ = 0)
and Nesterov(α, β) = UM(α, β, γ = 1).

Algorithm 4 UnifiedMomentum update [She+18]

Args: step-size α, momentum coefficient β, interpolation factor γ ∈
[
0, 1

1−β

]
; initial

conditions ϕ0 = 0 and θ0.
1: Measure current system error et
2: ϕt+1 ← βϕt + αet
3: θt+1 ← θt + ϕt+1 + βγ (ϕt+1 − ϕt)

Theorem 10.4.1 [Proof in Appx. D.2.] Under the same initialization θ0, UnifiedMomen-
tum (α, β 6= 1, γ) is a special case of the νPI algorithm with the hyperparameter choices:

ν ← β ξ0 ← (1− β)e0 (10.7)

κi ←
α

1− β
κp ← −

αβ

(1− β)2
[1− γ(1− β)] . (10.8)

Table D.1 in Appx. D.2 summarizes the connections we have established between νPI
and existing methods. We emphasize that the exponential moving average in νPI is a
crucial component to obtain the generalization of momentum methods.

Fig. 10.4 emphasizes the greater generality of νPI compared to Polyak and Nesterov,
presented in Thm. 10.4.1.
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Figure 10.4: Left: Hyperparameter choices from Thm. 10.4.1 for which νPI (ν, κp, κi) realizes
Polyak (α = 1

2 , β) and Nesterov (α = 1
2 , β). Right: The right plot zooms on

the range −1 ≤ β ≤ 0.25. Polyak comprises a limited surface in the (ν, κp, κi)
space, leaving configurations outside this surface unexplored. Note how positive
(resp. negative) values of β result in negative (resp. positive) values of κp, colored
in red (resp. blue). Colored paths correspond to different values of α. The dashed curves
match between both plots.
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Note that the κp coefficient changes between Polyak and Nesterov, while the κi coef-
ficient coincides. Formally,

κPolyak
p = − αβ

(1− β)2
, κNesterov

p = − αβ2

(1− β)2
≤ 0. (10.9)

Moreover,κNesterov
p isnon-positive, regardless ofβ. In contrast, a negativemomentum

value β < 0 induces a positive κPolyak
p . This observation is in line with the benefits of

using a negative Polyak momentum coefficient (for both players) in adversarial games
presented by Gidel et al. [Gid+19a].

10.4.3 Interpreting the updates of νPI

Consider the execution of νPI (ν, κp, κi) and GA (α = κi) at time t†. The relative size† It is sufficient to consider a
single scalar multiplier since

the updates of both
algorithms decouple across

constraints/multipliers.

between these updates is:

∆νPI
∆GA

≜
θνPIt+1 − θt
θGA
t+1 − θt

=
1

1− ψ

[
1− ψξt−1

et

]
, (10.10)

where ψ ≜ κp(1−ν)
κi+κp(1−ν) . Fig. 10.5 illustrates the behavior of the relative size of updates

of νPI compared to GA. The left plot displays νPI with κp > 0 and ν = 0. The right plot
shows the νPI-equivalent of Polyak with positive momentum‡.‡ The case of Polyak with

negative momentum
resembles the left plot of

Fig. 10.5. See Appx. D.3 for
further details. 1

1−ψ

1

ξt− 1ψξt− 1 et

∆νPI
∆GA

1
1−ψ

1

ξt− 1ψξt− 1 et

∆νPI
∆GA

νPI(κi, κp > 0, ν = 0) νPI(κi, κp < 0, ν)=Polyak(α, β > 0)

Figure 10.5: Comparing the update of νPI relative to GA. νPI increases the multipliers faster
than GA when the constraint violation is large, enhancing convergence speed;
and proactively decreases them near the feasible set, preventing overshoot. The
blue, yellow, and red regions correspond to cases in which the updates performed by the νPI
algorithm are faster, slower, or in the opposite direction than those of GA, respectively. This
plot illustrates the case ξt−1 > 0.

Consider the colored regions present in the left plot of Fig. 10.5:

Mode A When ξt−1 < et, the current violation is greater than the historical violation
average (right region). νPI algorithm increases the multiplier faster than GA. When
et < 0 (left region), the primal iterate is feasible and the νPI algorithm agrees with GA
in decreasing the multiplier, but does so much faster (with a factor above 1

1−ψ ).

88



10 On PI controllers for updating Lagrange multipliers in constrained optimization

Mode B When et ∈ [ψξt−1, ξt−1], the constraint violation has improved compared
to the historical average but is still infeasible. In this case, νPI increases the multiplier
more slowly than GA, consistent with the perceived improvement in the violation.

Mode C When et ∈ [0, κξt−1], the primal iterate is still infeasible. However, the
νPI algorithm determines that the constraint improvement is large enough to warrant a
decrease in the multiplier. Note that in this case, GA would have continued increasing
the multiplier.

In all of these cases, the νPI optimizer can be seen as executing proactively by con-
sidering how the current constraint violation compares to the historical estimates. This
proactive behavior allows the method to increase the multiplier faster than GA when the
constraint satisfaction is degrading, and reduce the multiplier faster than GA whenever
sufficient improvement has been made.

In stark contrast, Fig. 10.5 (right) shows a setting in which κi and κp have been chosen
according to Thm. 10.4.1 for β = ν = 0.3, i.e. using positive Polyak momentum. In this
case, the algorithm would produce stronger increases of the multiplier whenever feasibil-
ity is improved, while weaker increases are executed whenever feasibility worsens. This
counter-intuitive behaviormay be the cause of oscillations and overshoot underlying the
failure of positive momentum methods in Lagrangian games.

10.4.4 Oscillator dynamics

Thecontinuous-timedynamics of gradient-descent/νPI-ascent on an equality-constrained
problemcanbe characterized by the second-order differential equations (seeThm.D.4.1): ẍ = −

(
∇2f +

∑
c′

µc′∇2hc′

)
ẋ− Jhµ̇ (10.11a)

µ̈ = κiJh⊤ẋ+ κpJh⊤ẍ+ κpΞ, (10.11b)

where Ξ =
[
ẋ⊤∇2h1ẋ, . . . , ẋ

⊤∇2hcẋ
]⊤ ∈ Rc.

In Appx. D.4 we present the spectral analysis for the Lagrangian system associated
with an equality-constrained quadratic program. In particular, we demonstrate how the
continous-time νPI algorithm can modify the eigenvalues of the system and transition
between divergent, oscillatory, critically damped and overdamped behaviors. We show
how these regime changes are controlled by the κp hyperparameter. Moreover, critical
damping may require a non-zero value of κp, and is thus not achievable by GA.

10.4.5 Practical remarks

In practice, we suggest the initial condition ξ0 = e0, as it ensures that the first step of νPI
matches that of gradient ascent. In cases where the constraints can be evaluated without
noise, we suggest a default value of ν = 0. This leaves only the additional hyperparameter
κp to be tuned (besides the “step-size” κi). We highlight that themain benefits of the νPI
algorithm remain even when ν = 0. However, ν can be useful for filtering noise in the
constraint measurement, as shown in our fairness experiments in §10.5.2.
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There is a predictable monotonic behavior of the damping of the system as the κp
coefficient increases. This is illustrated in Fig. 10.9 for a sparsity task. As a side effect,
higher values of κp make the tuning of the κi coefficient easier, as seen in Fig. 10.6. As a
heuristic to tune νPI, we suggest considering a large initial κp value (so that its influence
on the optimization dynamics is significant), and then try a grid of κi values. A good
starting place is a grid of κi values around a suitable step-size for gradient ascent.

10.5 experiments

In this section, we present an empirical comparison between νPI and a series of baseline
optimization methods popular for minimization. We consider gradient ascent, gradi-
ent ascent with positive [Pol64; Nes83] and negative [Gid+19a] momentum, and Adam
[KB15]. The goal of our experiments is to highlight the flexibility of νPI and its ability
to mitigate oscillations and overshoot when used to optimize Lagrange multipliers.

Our implementations use PyTorch [Pas+19] and the Cooper library for Lagrangian
constrained optimization [Gal+24].

10.5.1 Hard-margin SVMs

We consider solving a hard-margin SVM problem via its associated Lagrangian formu-
lation. While specialized QP solvers exist to find solutions for this task, we consider the
Lagrangian formulation in order to illustrate the dynamics of the multipliers in a simple
machine learning task. These experiments show how standard methods for minimiza-
tion produce oscillations on the multipliers, which have detrimental effects on conver-
gence. Consider

min
w

1

2
‖w‖2 s.t. yi(w

⊤xi + b) ≥ 1 for i ∈ [m], (10.12)

where {(xi, yi)}mi=1 are labeled training datapoints, and w and b are the parameters of
the SVM classifier.

We perform binary classification on two linearly separable classes from the Iris dataset
[Fis88]. We apply alternatingGDAupdates on the Lagrangian associatedwithEq. (10.12),
with a fixed optimizer for the primal variables. For details on our SVM experiments, see
Appx. D.6.1.

Multiplier dynamics. Fig. 10.1 shows the oscillations on the multiplier in all of the
baselines. In these tasks, all of the methods that do not diverge achieve perfect training
and validation accuracy. However, among the methods we experiment with, the only
method capable of achieving zero constraint violation is the νPI algorithm. In contrast
to all baselines, νPI dampens the oscillations and converges to the optimal multiplier
value.

Sensitivity analysis. Fig. 10.6 (left) illustrates the robustness of νPI to the choice of
κi. The considered baselines fail to converge to the ground truth multiplier value, across
a wide range of step-sizes. For these baselines, small step-size choices avoid divergence
but do not lead to recovering the optimal Lagrange multipliers, while large step-sizes in-
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Figure 10.6: Without a κp of at least one none of the methods converge to the optimal dual
variable. Higher κp values allow for choosing higher and broader range of κis.
The x-axis of the left plot represents κi for the νPI parameter and α, the step-size, for the
other optimizers. In the right plot, the gray color shows the runs exceeding a distance of 103

to λ∗.

crease the oscillations. In contrast, introducing a κp term of more than 1 results in con-
vergence for some step-sizes within the selected range (see the νPI curves). Morevoer,
increasing κp to a higher value broadens the range of step-sizes that lead to convergence,
and enables the use of bigger step-size values that converge. This behavior can be ob-
served more extensively in the heatmap of Fig. 10.6 (right).

10.5.2 Fairness

We consider a classification task under statistical parity constraints, as described in Cot-
ter et al. [Cot+19b]. This leads to the following constrained optimization problem:

min
w

L(w) s.t. P(ŷ = 1 | g) = P(ŷ = 1), ∀g ∈ G (10.13)

where L(w) is the loss of model w, ŷ is the model prediction, and G represents the set
of protected groups in the dataset. The constraints require the probability of positive
prediction to be equal across all groups.

Model and data. We train binary classifiers on the Adult dataset [BK96]. Groups
correspond to the intersection of race (2 values) and gender (5 values), leading to 10
constraints. We use anMLPwith two 100-dimensional hidden layers. Our experimental
setup is similar to those of Zafar et al. [Zaf+19] and Cotter et al. [Cot+19b]. However,
in our setting, non-convexity precludes the use of specialized solvers (as done by Zafar
et al. [Zaf+19]) and requires iterative optimization approaches.

Optimization configuration. We train the model using Adam (α = 10−2) with a
batch size of 512. To mitigate the noise in the estimation of the constraint satisfaction,
we update the multipliers once every epoch, using the exact constraint measurement
over the entire training set.
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Results. Figure 10.7 includes training curves for experiments with GA and νPI. We
report two of themultipliers, themodel accuracy, and themaximum constraint violation
(in absolute value).

For this task, GA is a strong baseline as it successfully reduces the violation of the
constraints. Both GA and νPI (ν = 0.99) significantly improve compared to an uncon-
strained baseline which achieves a maximum violation of 20% (not shown in Fig. 10.7
for readability).

νPI (ν = 0) runs exhibit unstable multiplier dynamics as the noise of the constraints
is amplified by the proportional term. During our experiments, we observed that when
ν = 0, larger κp values lead to noisier multipliers and unstable optimization. In contrast,
νPI (ν = 0.99) reduces the maximum violation faster and achieves better training
accuracy (92.4% vs 89%).

All experiments reach a final maximum violation of around 1.7%. We hypothesize
that it is not possible to decrease this value further (while carrying out stochastic updates
on the primal variables) since the constraint gradients may be misaligned across mini-
batches.

Multiplier dynamics. As can be seen in the evolution of multipliers 2 and 7 shown
in Fig. 10.7, νPI yields multipliers that stabilize at their limiting values faster than those
produced by GA.
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Figure 10.7: Dynamics of νPI compared to GA for the fairness task in Eq. (10.13). νPI has faster
multiplier convergence and achieves a better training accuracy than GA. All dual
optimizers use a step-size (κi for νPI) of 0.03. Results are aggregated across five seeds.

10.5.3 Sparsity

We consider the problem of learning models under inequality L0-sparsity constraints
[LWK18; Gal+22]. See Appx. D.6.2 for further background.

min
w,ϕ∈Rd

Ez|ϕ [L(w � z | D)] s.t.
Ez|ϕ[‖z‖0]

#(w)
≤ ϵ (10.14)
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When using GA updates for the multipliers, Gallego-Posada et al. [Gal+22] observe a
tendency of the model to “overshoot” into the feasible region and become significantly
less dense than the prescribed level. Since a reduction in model density corresponds to a
reduction in capacity, this overshoot may have a detrimental effect on the performance
of the model.

Our experiments explore the effect of νPI on the sparsity-constrained task, and com-
pare it with dual restarts [Gal+22, §10.3]. Our results show that νPI allows for fine-
grained control over overshoot, thus enabling the sparse model to retain as much perfor-
mance as possible.

Experiment configuration and hyperparameters. We classify CIFAR-10 [Kri09] im-
ages with ResNet-18 [He+16] models. To highlight the ease-of-use of νPI, our setup
remains as close as possible to Gallego-Posada et al. [Gal+22]: we apply output chan-
nel sparsity on the first layer of each residual block in the model, and re-use the authors’
choice of optimizer and step-size for ϕ. Our sparsity experiments consider ν = 0.

Global and layer-wise settings. We present sparsity experiments with either 1© one
global constraint on the sparsity of the entire model, or 2© multiple constraints, each
prescribing a maximum density per layer.

The metrics reported in this section are aggregated across 5 seeds. Experimental de-
tails for this task can be found in Appx. D.6.2. For comprehensive experimental results
across multiple sparsity levels, and ablations on the use of momentum and Adam for
updating the multipliers, see Appx. D.7.1.

Results. Fig. 10.8 shows how gradient ascent and positive and negative momentum
values consistently yield runs that overshoot into becoming overly sparse. The extra
reduction in capacity results in a loss in performance. In contrast, νPI consistently re-
covers feasible solutions, with minimal overshoot. While dual restarts do not incur in
overshoot, they produce slightly infeasible solutions.
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Figure 10.8: CIFAR10 trade-off plot for global sparsity under a 30% density target. νPI success-
fully achieves the desired sparsity while achieving the highest train accuracy. The
shaded region is the feasible set. As higher density correlates to higher train accuracy, over-
shooting to a lower density is undesirable. All optimizers use the same step-size.
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Fig. 10.9 consists on an ablation on the κp value. We observe that by increasing the
hyper-parameter, overshoot is reduced, eventually turning into undershoot (which leads
to infeasible solutions). Since the density of themodel ismonotonically tied to the choice
of κp, tuning νPI for this task can be done via bisection search, without the need to
consider a grid (which is usually required for tuning the step-size).
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Figure 10.9: Ablation of κp values for νPI on CIFAR10. An increasing κp leads to more damp-
ing and less overshoot. Target density is 30%. The shaded region is the feasible set.

Table 10.1 shows sparsity experiments with layer-wise sparsity targets. Gradient as-
cent andmomentummethods overshoot and the degree of overshoot differs significantly
across layers. In contrast, GA with dual restarts and νPI mitigate overshoot and produce
constraints spanning a narrow range of values. This highlights the robustness of νPI as
the κp coefficient did not need to be tuned separately per constraint.

Table 10.1: CIFAR10 results for layer-wise sparsity under a 30% density target. GA and momen-
tum methods overshoot to different values for each constraint. νPI achieves the de-
sired sparsity on all layers while achieving the highest train accuracy. All dual opti-
mizers use the same step-size.

Method Accuracy Violation
Train Test Min Max Range

Polyak β = −0.5 91.9 83.6 -26.5 -7.9 18.9
Polyak β = −0.3 92.1 83.4 -27.1 -6.7 20.6
Polyak β = 0.3 91.9 82.5 -26.3 -2.3 24.0
GA 92.0 84.1 -27.8 -5.2 22.0
GA + Dual Restarts 95.0 85.3 -0.0 1.2 1.2
Ours - νPI κp = 8.0 95.1 86.2 -1.7 0.1 1.8

Multiplier dynamics. Figure 10.2 shows the training dynamics for a global sparsity
constraint and its multiplier under a 30% density target. We observe that GA and Polyak
quickly lead to overshoot into the feasible set, but manage to regain somemodel capacity
as training progresses. GA with dual restarts sets the value of the multiplier to zero as
soon as feasibility is achieved, thus preventing an incursion of the constraint into the
feasible set. νPI produces well-behaved multipliers and successfully avoids overshoot.
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10 On PI controllers for updating Lagrange multipliers in constrained optimization

10.6 conclusion

Previous work has highlighted that employing PID controllers on the multipliers of La-
grangian constrained optimization problems reduces oscillation and overshoot. In this
paper, we consider νPI, a variant of a PI controller that generalizes various popularmeth-
ods for optimization. We complement previous work by providing insights justifying
why PI controllers are desirable for Lagrangian optimization. Moreover, we highlight
some intuitions as to why momentum methods fail in this context. While we focus our
efforts on constrained optimization, our insights apply to general min-max games where
one of the players is linear. Investigating the behavior of νPI on non-linear players is left
as a direction of future work.

impact statement

Constrained optimization offers tools for reliably enforcing properties onmachine learn-
ing models. It is, therefore, applicable for enhancing safety, robustness, and fairness in
AI models. By integrating constraints into the model development process, rather than
retrofitting safety measures as afterthoughts, we advocate for a paradigm shift towards
building models that are inherently secure “by design.” We intend our fairness exper-
iments as a conceptual illustration of the potential for positive impact of constrained
approaches in the development of machine learning models.

Our paper presents insights into the robustness of algorithms for constrained opti-
mization, and highlights νPI as a reliable tool for trainingmodels with constraints. Thus,
our work lays the groundwork for practitioners to adopt and implement constrained ap-
proaches confidently in diverse real-world applications.

reproducibility statement

We provide our code*, including scripts to replicate the experiments in this paper. Sec- * Available at:
https://github.com/
motahareh-sohrabi/
nuPI

tion 10.4.5 presents some considerations when using the νPI algorithm in practice. Ex-
perimental details, as well as the hyper-parameters used in our experiments, are included
in Appx. D.6. Our implementations use the open-source libraries PyTorch [Pas+19] and
Cooper [Gal+24].
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article details

JoseGallego-Posada∗, JuanRamirez*, MerajHashemizadeh and SimonLacoste- * Equal contribution.
Julien. Cooper: Constrained Optimization for Deep Learning. This paper is under
submission at MLOSS@JMLR, 2024.

author contributions

JoseGallego-Posada proposed the initial idea of developing a library for constrained opti-
mization geared towards deep learning tasks. Jose Gallego-Posada and Juan Ramirez are
themain developers for the code and documentation. Meraj Hashemizadeh contributed
to the API design and the implementation of systematic tests. Jose Gallego-Posada and
Juan Ramirez led the writing of the paper. Simon Lacoste-Julien provided funding and
supervision during the execution of research projects that nurtured the development of
the library.

context

We decided to develop the open-source Cooper library as a complement to the paper
presented in Chapter 4. While the main contribution of our NeurIPS2022 paper is to
demonstrate the effectiveness of the constrained approach† for training sparse models, † Specially when compared

to penalty-based methods.we were convinced that these benefits were not restricted to that specific task. The main
goal of Cooper is to facilitate the adoption of constrained optimization techniques in the
training of deep learning models, be it for research or applied projects.

The experiments in the NeurIPS paper required the implementation of a pipeline for
tackling constrained optimization problems in a way that was suitable for deep learning
model training, and aligned with the forward, backward, and step pattern common
within the PyTorch framework. Existing packages for constrained optimizationwere not
applicable to the non-convex, high-dimensional, and non-smooth problems that arise in
deep learning.

While some algorithms such as gradient descent-ascent are relatively straightforward,
Cooper implements (and unit-tests!) more complex update schemes and includes sev-
eral advanced features that enable efficiently tackling problems with large numbers of
(potentially non-differentiable) constraints. Cooper can serve as a unifying‡ framework ‡ Much like how PyTorch

provides the community
with standardized and
tested implementations of
neural network layers and
optimizers.

to enhance the reproducibility and ease of comparison between research projects on con-
strained optimization for machine learning.
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abstract

Cooper is an open-source package for solving constrained optimization problems in-
volving deep learning models. Cooper implements several Lagrangian-based first-order
update schemes, making it easy to combine constrained optimization algorithms with
high-level features of PyTorch such as automatic differentiation, and specialized deep
learning architectures and optimizers. Although Cooper is specifically designed for deep
learning applications where gradients are estimated based on mini-batches, it is suitable
for general non-convex continuous optimization. Cooper’s source code is available at
https://github.com/cooper-org/cooper.

12.1 introduction

The rapid advancement and widespread adoption of algorithmic decision systems, such
as large-scale machine learning models, have generated significant interest from aca-
demic and industrial research organization in enhancing the robustness, safety, and fair-
ness of these systems. These research efforts are typically driven by governmental regu-
lations [Cou24] or ethical considerations [DAV18].

The ability to enforce complex behaviors in machine learning models is a central com-
ponent for ensuring compliance with the mentioned regulatory and ethical guidelines.
Constrained optimization offers a rigorous conceptual framework accompanied by al-
gorithmic tools for reliably training machine learning models that satisfy the desired
requirements. These requirements can often be formally encoded as numerical (equality
or inequality) constraints accompanying the training objective of the model:

min
x
f(x) subject to g(x) ≤ 0 and h(x) = 0. (12.1)

For example, Dai et al. [Dai+24] successfully leverage a constrained optimization ap-
proach for striking a balance between the helpfulness, harmfulness and willingness-to-
respond of large languagemodels trained with reinforcement learning from human feed-
back [Chr+17; Ouy+22]. Other works have demonstrated the benefits of constrained
optimization techniques in fairness [Cot+19b; Has+24], safe reinforcement learning
[SAA20], active learning [ENR22] andmodel quantization [HER23]. Our previouswork
has highlighted the tunability advantages of constrained optimization over penalized for-
mulations (where regularizers are incorporated as penalties in the objective function) for
training sparse models [Gal+22]
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This paper presents Cooper, a library for solving constrained optimization problems
with PyTorch [Pas+19]. Cooper aims to facilitate the use of constrained optimization
methods in machine learning research and applications. It implements several first-
order update schemes for Lagrangian-based constrained optimization, along with spe-
cialized features for tackling problemswith large numbers of (possibly non-differentiable)
constraints. Cooper benefits from PyTorch for efficient tensor computation and auto-
matic differentiation.

Key differentiators
Cooper is a general-purpose library for non-convex constrained optimization, with a
strong emphasis on deep learning. In particular, Cooper has been designed with na-
tive support for the framework of stochastic first-order optimization using mini-batch
estimates that is prevalent in the training of deep learning models.

Cooper’s Lagrangian-based approachmakes it suitable for awide range of applications.
However, some optimization problems enjoy special structure and admit specialized op-
timization algorithms with enhanced convergence guarantees. We recommend the use
of Cooper unless specialized algorithms are available for a given application.

Existing constrained optimization libraries
A notable precursor of Cooper is TensorFlow’s TFCO* [Cot+]. We developed Cooper* Not actively maintained at

the time of writing. in response to the shift of the machine learning research community towards PyTorch.
Cooper is heavily inspired by the design of TFCO.

Among the most popular alternatives for convex constrained optimization, we high-
light the CVXPY library [DB16]. CVXPY provides a modeling language for disciplined
convex programming in Python and automates the transformation of the problem into
a canonical form, before executing open-source or commercial solvers. CVXPY is not
focused on non-convex problems and thus not suitable for deep learning applications.

GeoTorch [Lez21] and CHOP [NP20] are alternatives for constrained optimization
in PyTorch. JAXopt [Blo+22] is a JAX-based option. These libraries rely on the exis-
tence of efficient projection operators, linear minimization oracles, or specific manifold
structure in the constraints—whereas Cooper is more generic and does not rely on these
specialized structures.

Impact
Cooperhas enabled several papers published at topmachine learning conferences: Gallego-
Posada et al. [Gal+22], Ramirez and Gallego-Posada [RG22], Zhu et al. [Zhu+23],
Hashemizadeh et al. [Has+24], Sohrabi et al. [Soh+24], Lachapelle et al. [Lac+24],
and Jang et al. [Jan+24].

12.2 algorithmic overview

Problem formulation

Constrained optimization problems involving the outputs of deep neural networks are
typically non-convex. A general approach to solving non-convex constrained problems
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is finding a min-max point of the Lagrangian associated with the optimization problem:

min
x

max
λ≥0,µ

L(x,λ,µ) ≜ f(x) + λ⊤g(x) + µ⊤h(x), (12.2)

where λ ≥ 0 and µ are the Lagrange multipliers for the inequality and equality con-
straints, respectively. Solving the min-max problem in Eq. (12.2) is equivalent to the
original problem in Eq. (12.1), even if some of the functions are non-convex. We refer the
interested reader to the works by Platt and Barr [PB87], Boyd and Vandenberghe
[BV04], Nocedal and Wright [NW06], and Bertsekas [Ber16] for comprehensive
overviews on the theoretical and algorithmic aspects of constrained optimization.

Update schemes

Cooper implements several variants of (projected) gradient descent-ascent (GDA) to
solve Eq. (12.2). The simplest approach is simultaneous GDA:

xt+1 ← PrimalOptimizerStep
(
xt,∇xL(xt,λt,µt)

)
, (12.3a)

λt+1 ←
[
DualOptimizerStep

(
λt, g(xt)

)]
+
, (12.3b)

µt+1 ← DualOptimizerStep
(
µt,h(xt)

)
, (12.3c)

where [ · ]+ is an element-wise projection onto R≥0 to ensure the non-negativity of in-
equality multipliers. Note that the gradients of the Lagrangian with respect to λ and µ
simplify to g(xt) and h(xt), respectively.

Convergence properties

Recent work demonstrates that GDA can work in practice for Lagrangian constrained
optimization [Gal+22; Soh+24], although it may diverge for general min-max games
[Gid+19b].

Optimizers

Cooper allows the use of generic PyTorch optimizers to perform the primal and dual
updates in Eq. (12.3). This enables the use of pre-existing pipelines for unconstrained
minimization when solving constrained optimization problems using Cooper.

Additional features

Cooper implements the Augmented Lagrangian [Ber16, §5.2.2] formulation. Cooper

also implements the proxy-Lagrangian technique of Cotter et al. [Cot+19b], which al-
lows for solving constrained optimization problem with non-differentiable constraints.
Moreover, Cooper supports alternative schemes to simultaneous GDA such as alternat-
ing GDA and extragradient [Kor76; Gid+19b]. Finally, Cooper implements the νPI al-
gorithm [Soh+24] for improving the multiplier dynamics.
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12.3 using cooper

Figure 12.1 presentsCooper’smain classes. Theuser implements aConstrainedMinimi-
zationProblem (CMP) holding Constraint objects, each in turn holding a correspond-
ing Multiplier. The CMP’s compute_cmp_state method returns the objective value
and constraints violations, stored in a CMPState dataclass. CooperOptimizers wrap the
primal and dual optimizers and perform updates (such as simultaneous GDA).The roll
method of CooperOptimizers is a convenience function to (i) perform a zero_grad
on all optimizers, (ii) compute the Lagrangian, (iii) call its backward and (iv) perform
the primal and dual optimizer steps.

‣ constraint_type: 
ConstraintType 

‣ multiplier: Multiplier 
‣ formulation_type: 
Formulation 

‣ penalty_coefficient: 
PenaltyCoefficient 

Constraint

‣ violation: Tensor 
‣ constraint_features: 
Tensor 

‣ contributes_to_(primal
/dual)_update: bool

ConstraintState‣ constraint_type: 
ConstraintType 

‣ weight: Tensor 
‣ grad: Tensor

Multiplier

‣ forward()  Tensor 
‣ post_step_()

→

‣ cmp: ConstrainedMinProblem 
‣ primal_optimizers:  
list[torch.optim.Optimizer] 

‣ dual_optimizers:  
list[torch.optim.Optimizer]

ConstrainedOptimizer

‣ primal_step() 
‣ dual_step() 
‣ roll()  RollOut→

‣ _constraints: 
dict[str, Constraint]

ConstrainedMinProblem

‣ compute_cmp_state()  
CMPState

→

‣ loss: Tensor 
‣ observed_constraints:  
dict[Constraint, 
ConstraintState] 

‣ misc: dict

CMPState

‣ compute_(primal/dual) 
_lagrangian() 
LagrangianStore

→

Figure 12.1: Dependency graph between the main classes in Cooper’s API.

Listing 12.1 presents a code example for solving a norm-constrained logistic regres-
sion problem with Cooper. This code illustrates the ease of integration of Cooperwith a
standard PyTorch training pipeline involving the use of a dataloader, GPU acceleration
and the Adam optimizer [KB15] for the primal parameters.

12.4 software overview

Installation

Cooper can be installed in Python 3.9-3.11 via pip install cooper-optim. It is sup-
ported on Linux, macOS and Windows. Cooper is compatible with PyTorch 1.13-2.3.

Collaboration and code quality

Cooper is hosted on GitHub under an MIT open-source license. We welcome external
contributions that comply with Cooper’s contribution guide. We make extensive use of
type-hints and apply automatic formatting using Black [Lan+18] and isort [Cro+13]. We
ensure PEP8 compliance using Flake8 [Zia+11]. Continuous integration practices are in
place to ensure that new contributions pass all tests and comply with the style guidelines
before being merged.

All new contributions are expected to be tested following the contribution guidelines.
For instance, every optimization scheme counts with both low-level tests ensuring that
individual updates are performed correctly, and high-level tests on convex problems
checking convergence to verified solutions*. The line coverage of our tests is above 90%.* We rely on CVXPY

[DB16] to obtain solutions
with optimality certificates.
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Listing 12.1: Example code for solving a norm-constrained logistic regression task using Cooper.

1 import cooper
2 import torch
3
4 train_loader = ... # Create a PyTorch DataLoader
5 loss_fn = torch.nn.CrossEntropyLoss()
6
7 class NormConstrainedLogisticRegression(cooper.ConstrainedMinimizationProblem):
8 def __init__(self, norm_threshold: float):
9 self.norm_threshold = norm_threshold

10 constraint_kwargs = { ” c on s t r a i n t _ t y p e ”: cooper.ConstraintType.INEQUALITY}
11 multiplier = cooper.multipliers.DenseMultiplier(device=DEVICE, **constraint_kwargs)
12 # By default constraints are built using `formulation_type=cooper.LagrangianFormulation`
13 self.norm_constraint = cooper.Constraint(multiplier=multiplier, **constraint_kwargs)
14
15 def compute_cmp_state(self, model, inputs, targets) -> cooper.CMPState:
16 logits = model.forward(inputs.view(inputs.shape[0], -1))
17 loss = loss_fn(logits, targets)
18
19 sq_l2_norm = model.weight.pow(2).sum() + model.bias.pow(2).sum()
20 # Constraint violation uses the convention "g - \epsilon \leq 0"
21 norm_constraint_state = cooper.ConstraintState(violation=sq_l2_norm - self.norm_threshold)
22
23 # The `misc` field can be used to store any additional information
24 misc = { ” ba tch_accuracy ”: ...}
25
26 # Declare observed constraints and their measurements
27 observed_constraints = { ” no rm_cons t r a in t ”: norm_constraint_state}
28
29 return cooper.CMPState(loss=loss, observed_constraints=observed_constraints, misc=misc)
30
31 cmp = NormConstrainedLogisticRegression(norm_threshold=1.0)
32
33 # Create a Logistic Regression model and primal and dual optimizers
34 model = torch.nn.Linear(in_features=IN_FEATURES, out_features=NUM_CLASSES, bias=True)
35 model = model.to(DEVICE)
36 primal_optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
37 # Must set `maximize=True` since the Lagrange multipliers solve a _maximization_ problem
38 dual_optimizer = torch.optim.SGD(cmp.dual_parameters(), lr=1e-2, maximize=True)
39
40 cooper_optimizer = cooper.optim.SimultaneousOptimizer(
41 cmp=cmp, primal_optimizers=primal_optimizer, dual_optimizers=dual_optimizer
42 )
43
44 for epoch_num in range(NUM_EPOCHS):
45 for inputs, targets in train_loader:
46 inputs, targets = inputs.to(DEVICE), targets.to(DEVICE)
47
48 # `roll` is a(n optional) convenience function that packages together the evaluation
49 # of the loss, call for gradient computation, the primal and dual updates and zero_grad
50 compute_cmp_state_kwargs = { ”model ”: model, ” i npu t s ”: inputs, ” t a r g e t s ”: targets}
51 roll_out = cooper_optimizer.roll(compute_cmp_state_kwargs=compute_cmp_state_kwargs)
52 # `roll_out` is a struct containing the loss, last CMPState, and the primal
53 # and dual Lagrangian stores, useful for inspection and logging
54
55 torch.save(model.state_dict(), ’ model . pt ’) # Regular model checkpoint
56 torch.save(cmp.state_dict(), ’ cmp . pt ’) # Checkpoint for multipliers and penalty coefficients
57 torch.save(cooper_optimizer.state_dict(), ’ cooper_opt im i ze r . pt ’) # PyTorch optimizer states
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Documentation

Cooper provides extensive documentation† for all features. We include formal state-† Available at
https://cooper.
readthedocs.io

ments of the updates implemented by all optimizers along with bibliographical refer-
ences to relevant sources. We provide quick-start guides aimed at i) users familiar with
deep learning problems, and ii) to a broader audience of users interested in generic non-
convex constrained optimization problems. Additionally, we have made available sev-
eral well-documented tutorials illustrating the use of Cooper’s core features.

12.5 conclusion

Cooper provides tools for solving constrained optimization problems in PyTorch. The
library supports several Lagrangian-based first-order update schemes and has been suc-
cessfully used in machine learning research projects. The structure of Cooper allows for
easy implementation of new features such as alternative problem formulations, implicitly
parameterized Lagrange multipliers, and additional ConstrainedOptimizerwrappers.
Implementing a version of Cooper for JAX [Bra+18] constitutes promising future work.
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13Conclusions and Perspectives

In this thesis, we have presented an extensive study on the use of constrained optimiza-
tion in machine learning. This section summarizes our main positions and contribu-
tions, and discusses limitations, along with directions for future research.

Why do we need constrained optimization in machine learning?

The machine learning community has made significant progress on building increas-
ingly capablemodels during the last decade. As a result, research and regulatory interests
have expanded towards ensuring that, besides achieving good performance, models are
also safe, fair, and robust. However, in Chapter 1 we argued that the “build now, fix later”
mentality that is currently widespread in the development of machine learning models
is a hindrance to the-long term progress of the field.

The constrained approach allows incorporating application requirements directly into
the optimization pipeline in a way that enhances experimental accountability: only so-
lutions that satisfy the constraints are considered valid. Rather than aiming for models
that happened to satisfy the constraints or regulations, we train models that are designed
to respect them. The constrained optimization paradigm enables service providers to
demonstrate regulatory compliance to stakeholders or enforcement agencies.

However, lacking readily available techniques for incorporating problem requirements
during themodel development process, the community has become overly reliant on pe-
nalized approaches.

How are constrained methods better than penalized approaches?

Penalized formulations have several shortcomings when handling non-convex prob-
lems with interpretable requirements.

Tuningand interpretability. Adjusting the penalty parameter to achieve pre-specified
trade-off levels is a non-trivial task. As we saw in Chapter 4, it is difficult to quantify the
influence of the penalty parameter in terms of the sparsity of the model at the end of
training. Given a problem requirement with clear semantics such as the maximum al-
lowable model sparsity, opting for a penalized approach leads to (unnecessary) sacrifices
in hyper-parameter interpretability, and leads to expensive trial-and-error tuning.

In contrast, the problem specification (e.g. the desired sparsity) corresponds in a di-
rect and straightforward manner to the constraint level in the constrained approach. Al-
though the dual step-size is an additional hyper-parameter of gradient-based Lagrangian
techniques, we highlight that it is typically more robust to tune than the penalty parame-
ter itself. For example, in Fig. 4.1 we showed how the same value of the dual-step size was
effective for different desired sparsity levels. Conversely, the penalty parameter requires
challenging individual tuning for each target sparsity level.
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Exploring trade-offs. In non-convex problems, the penalized approach is limited in
its capacity to explore the entire Pareto frontier. As we discussed in §2.2.4, for problems
with a strictly positive duality gap*, there are points on the Pareto front of the problem* As is the case in most

non-convex problems. which cannot be reached by minimizing the penalized objective with any fixed choice of
penalty parameter.

In the constrained setting, the Lagrange multipliers weighing the constraints are not
fixed, but rather are decision variables that adjust dynamically throughout the optimiza-
tion process to encourage the satisfaction of the constraints. This fundamental differ-
ence allows the constrained approach to explore regions of the Pareto frontier that are
not reachable via penalized techniques.

Computational overhead. As mentioned in Sections 2.3.3 and 2.3.4, appropriate im-
plementations of Lagrangian methods† involve negligible computational overhead com-† Such as those in the

Cooper library (Chapter 12) pared to the penalized approach.

Considering the high cost and heavy engineering involved in the training of large-
scale deep learningmodels, and in light of the discussed advantages of constrainedmeth-
ods, we argue that it is a sub-optimal experimental strategy for researchers and practi-
tioners to focus solely on penalized approaches.

When are constrained methods not better than penalized approaches?

Our discussion of the advantages of constrained approaches relied heavily on the as-
sumption that the problem requirements are interpretable. In other words, we assumed
that the constraints have clear semantics, and that we have access‡ to the values of the‡ Through domain

knowledge or expert input. constraint levels that are meaningful for the application.

Consider the case where the constraint functions do not have interpretable semantics.
For example, the L2-norm is a popular penalty which has been show to correlate with
the ability of deep learning models to generalize [Ney+17]. While the L2-norm has a
straightforward mathematical definition, it is not at all clear what a specific value of the
L2-norm of the model parameters means in terms of the behavior of the model.

As another example, Bardes et al. [BPL22] introduce VICReg, a method for prevent-
ing collapse in self-supervised learning. The authors propose a penalized objective that
encourages the model to learn representations with sufficient per-dimension variance,
and low covariance across dimensions. As in the previous setting, it is difficult to pro-
vide a clear interpretation to the values of the regularizers§ and how said values relate to§ Beyond their

mathematical definition. the overall model performance.

In situations like these, using a constrained formulation may not be appropriate. Our
lack of understanding of the semantics of the constraints makes it is difficult to set rele-
vant constraint levels. Should the L2-norm of the model parameters be at most 1.7, 104,
or 3.8·106? Another challenge in these settings is establishing whether the constrained
problem to be formulated would be feasible. For example, in the case of VICReg, it is not
clear whether the model class has enough capacity to learn representations with both a
prescribed minimum threshold of per-dimension variance and a prescribed maximum
of covariance level across dimensions.
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Experimental design. A case of practical importance is when the penalty function is
a heuristic surrogate h for a downstream relevant property H . Suppose that we would
like to understand whether using h is a good regularizer for enforcingH . In this setting,
constrained optimization can be a useful tool for experimental design.

Naively, we could select L penalty coefficients {λl}  and solve L penalized problems,
leading to models {xl} with objective-penalty trade-offs {(f(xl), h(xl))}. Finally, we
can evaluate the behavior of the models at the downstream property, to obtain mea-
surements {H(xl)}. A shortcoming of this scheme, inheriting from the tunability chal-
lenges of penalized approaches (see Chapter 4), is that we have no direct control over the
achieved levels {h(xl)}.

In contrast, the constrained approach allows us to directly specify desired values of
the heuristic {ĥl} as constraint levels in L constrained problems, thus providing more
fine-grained control over the experimental design.

A protocol similar to this was used by Lachapelle et al. [Lac+24] when studying the
effect of mechanism sparsity for learning disentangled representations.

What are the main practical challenges when solving constrained optimiza-
tion problems in deep learning?

Optimization dynamics. Throughout all our contributions, we payed special atten-
tion to the optimization dynamics of the Lagrangian problem. Given the heavily engi-
neered protocols for training deep learning models, we opted for optimization schemes
that were compatible with adaptive optimization techniques like Adam [KB15] or heuris-
tic tuningmethods like learning rate schedules. Whilemore restrictive than genericmin-
max optimization techniques, this choice enabled us to successfully reuse the (frequently
pre-existing) choice of primal optimizer from the unconstrained setting.

This restricted scope also allowed us to concentrate on developing algorithmic inno-
vations for resolving some of the shortcomings of the plain gradient-ascent updates on
the Lagrange multipliers.¶ In particular, we showed how techniques like dual restarts ¶ Such as their excessive

growth, which caused
constraint overshoot.

(Chapter 4) and the νPI algorithm (Chapter 10) improved the training dynamics of the
multipliers, leading to more stable optimization and better-performing models.

Non-differentiable constraints. InChapters 6 and 8we successfully tackled problems
which involved non-differentiable constraints on model efficiency and pruning-induced
disparity, respectively. While in many cases the “true” constraints that are practically
relevant for a problem may be non-differentiable, a differentiable surrogate� is typically � Whose gradient “points in

the right direction” for
improving the non-
differentiable constraint.

available. For example, Chapter 6 we saw how a non-differentiable constraint on the
number of active parameters in a sparse model (after binarization of the stochastic gates)
admit a differentiable surrogate in terms of the expected number of active parameters.
The proxy-constraint technique proposed by Cotter et al. [Cot+19b]** provides a pro- ** Discussed in Eq. (2.34).
tocol for handling non-differentiable constraints by replacing them with a differentiable
surrogate only when algorithmically necessary.

Generalization. An important distinction between constrained and unconstrained
problems in deep learning is the appearance of a new axis of generalization. While in
single-objective minimization problems we are only concerned with the ability of the
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model to generalize to unseen data in terms of the loss, in constrained problems wemust
also consider the ability of the model to satisfy the constraints on unseen data. To miti-
gate the risk of constraint overfitting, Cotter et al. [Cot+19a] proposed a “two-dataset”
approach in which the constraint satisfaction is evaluated on a separate validation set.

Feasibility. The gradient-based Lagrangian approaches we explore in this thesis are
not feasible methods, i.e. the iterates visited during optimization are not guaranteed to be
feasible. Thus, it is possible that the “solution” found at the end of training is not feasible.

A natural idea to handle this issue would be to incorporate a “feasibility restoration”
phase into the execution of the algorithm [NW06, §15.4]. However, in machine learn-
ing, the use of a feasibility restoration phase could result in a catastrophic degradation
of the model’s ability to learn. For example, in a sparsity task with an aggressive spar-
sity level††, triggering a restoration phase early in training could drastically reduce the†† For example, leaving

1-5% active parameters. model’s capacity.

Since in the deep learning context, models are typically trained using a pre-specified
number of epochs (rather than using a stopping condition based, for example, on the
norm of the gradient of the objective), we believe techniques for annealing the constraint
levels during training, which we refer to as constraint schedulers, are a promising direc-
tion for future research.

What are the implications of this thesis for researchers in other fields?

Although the research presented in this thesis was mostly developed in an academic
machine learning environment, we believe the fundamental ideas are relevant to other
contexts in which companies and organizations require compliance with constraints. As
we argued in Chapter 1, satisfying domain-specific constraints can be a deciding factor
for determining whether a machine learning model is suitable for deployment in a real-
world application.

We hope this dissertation can serve as a catalyst for more interdisciplinary research
between the machine learning community and other fields. While machine learning re-
searchers and practitioners bring crucial expertise in developing machine learning mod-
els, experts in the domain of application are essential for defining the constraints that
are relevant to the problem or industry at hand.

RQ:‡‡ How to deal with constraints that are difficult to quantify?‡‡ Research question.

A key limitation of the constrained framework presented in this thesis is the implicit
assumption that the relevant problem requirements can be quantified and represented
numerically as constraint functions.

Already techniques like reinforcement learning fromhuman feedback [Chr+17; Ouy+22]
aim to “align” the behavior of large language models with human preferences, which are
not easily quantifiable. Imminently, we are bound to face situations where the constraint
functions, rather than being hard-coded by an experimenter, are learned from data.

110



13 Conclusions and Perspectives

RQ: Why do GDA-like schemes work in practical Lagrangian problems?

While theoretical results such as the work of Lin et al. [LJJ20] provide encouraging
evidence for the convergence of GDA in idealized settings, the practical success of GDA
for solving min-max Lagrangian problems remains a mystery. Why, despite all the po-
tential instabilities warned by theory, do we observe good performance in practice from
simple techniques like (alternating) GDA in non-convex deep learning tasks?

RQ: What is the role of overparametrization in constrained optimization?

The deep learning community has observed that vast overparametrization§§ can lead §§ Models with many more
parameters than required to
fit the training data.

to better generalization performance, at odds with the traditional bias-variance trade-
off narrative [Bel+19]. How crucial is overparametrization for solving constrained opti-
mization problems involving deep learning models?

Is there any connection between the success of gradient-based techniques on non-
convex overparametrized problems [Cho+15] and the success of GDAmentioned above?

RQ: How can we improve the Lagrange multiplier dynamics further?

Techniques like dual restarts (Chapter 4) andνPI (Chapter 10) can induce better train-
ing dynamics in constrained optimization problems compared to plain gradient-ascent
updates. However, we believe these methods are far from optimal and a truly adaptive
method for updating the Lagrange multipliers is yet to be developed.

On the theoretical front, could improved convergence guarantees for νPI be estab-
lished?

RQ: How can we make constrained techniques usable “during inference”?

In this thesis we focused on imposing constraints during the training phase of the
model. However, in many real-world applications, it is desirable to enforce constraints
during the inference¶¶ phase as well. Unfortunately, gradient-based Lagrangian tech- ¶¶ I.e., evaluating the model

on a given data-point.niques require many updates to the Lagrange multipliers before finding good estimates
that induce constraint satisfaction. What constrained optimization techniques are most
suitable for these instances?

RQ: What is next for Cooper?

While Cooper is currently designed around PyTorch, other popular frameworks like
Jax and PyTorch Lightning are suitable for integration with Cooper. Re-structuring the
library in a framework-agnostic way would be of great benefit.*** *** If you are interested in

becoming a contributor to
Cooper, visit
https://github.com/
cooper-org/cooper/.
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AAppendix to the First Contribution

a.1 reparametrization of the gates

Louizos et al. [LWK18] introduce the hard concrete distribution formodeling the stochas-
tic gates z. Consider a concrete random variable sj ∼ q(· | (ϕj , β)), given a fixed
0 < β < 1. This variable is then stretched and clamped, resulting in a mixed distri-
bution with point masses at 0 and 1, and a continuous density over (0, 1).

Formally, given Uj ∼ Unif(0, 1) and hyper-parameters γ < 0 < 1 < ζ ,

sj = Sigmoid
(
1

β
log
(
ϕj Uj
1− Uj

))
; z = clamp[0,1](s(ζ − γ) + γ)) (A.1)

The stochastic nature of z entails a model which is itself stochastic. Therefore, both
its L0-norm and predictions are random quantities. Nonetheless, the specific choice of
re-parameterization in Eq. (A.1) allows for the training loss in Eq. (4.2) to be estimated
using Monte Carlo samples.

Moreover, Louizos et al. [LWK18] show that the expected L0-norm can be expressed
in closed-form as:

Ez|ϕ [ ‖θ‖0] =
|θ|∑
j=1

P[zj 6= 0] =

|θ|∑
j=1

Sigmoid
(
logϕj − β log

−γ
ζ

)
(A.2)

The probability distribution of the gates has both learnable and fixed parameters. Ta-
ble A.1 specifies the values of the fixed parameters employed throughout this work, fol-
lowing Louizos et al. [LWK18].

Table A.1: Fixed parameters of the hard concrete distribution.

Parameter γ ζ β

Value -0.1 1.1 2/3

a.1.1 Choice of gates at test-time

Recall that the stochastic reparametrization induces a distribution over models. We sug-
gest a natural way of “freezing” the network gates so as to obtain a deterministic predictor
when evaluating the model on unseen data: replace each stochastic gate by its median.

ẑj = min
(
1, max

(
0, Sigmoid

(
log(ϕj)
β

)
(ζ − γ) + γ

))
(A.3)
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Note that these medians may be fractional, i.e., zj ∈ [0, 1]. Nonetheless, as shown in
Appx. A.9, for trained sparse models we observe the medians to be highly concentrated
at 0 and 1.

Louizos et al. [LWK18, Eq. (13)] originally proposed a similar approach for obtaining
a deterministic test-time model (without an explicit motivation for their choice). Their
proposal differs from ours in that they do not perform a division by β, and thus their
test-time gates are not the median (nor the mean) of the gate distributions.

In our preliminary experiments the division by β (under the settings of Table A.1)
did not induce significant changes in behavior. However, we opt for Eq. (A.3) in our
experiments based on its concise theoretical motivation.

a.1.2 Initialization of the gates

Louizos et al. [LWK18] introduce a hyper-parameter ρinit ∈ (0, 1) which determines
the initialization of the parameter ϕj of the hard concrete distribution of the gates (see
Appx. A.1). Concretely, the gate parameters ϕj are initialized as:

logϕj = log
(
1− ρinit
ρinit

)
+N (0, 10−2) (A.4)

Note that in practice, the optimization variable is logϕj (rather thanϕj) as this sidesteps
having to preserve the non-negativity of ϕj .

The choice of ρinit has an inverse relationship with the probability of a gate being active
at initialization. For simplicitly, we ignore the small additive noise in the initialization
of logϕj , and let ψ = (−γ/ζ)β . Formally, the influence of the hyper-parameter ρinit at
initialization is given by:

P[zj 6= 0] = Sigmoid

(
log
(
1− ρinit
ρinit

)
− log

(
−γ
ζ

)β)
=

1− ρinit
1− (1− ψ)ρinit

. (A.5)

a.2 schemes for grouping parameters

We consider two schemes for grouping gates: a) with a single constraint/penalty on the
proportion of active gates of themodel, or b) with separate constraints/penalties for each
layer. These groupings are referred to as model-wise and layer-wise.

For the penalized method, the corresponding optimization problems are given by:

Model-wise grouping Layer-wise grouping

min
θ̃,ϕ

fobj(θ̃,ϕ)+λpen gconst(ϕ) min
θ̃,ϕ

fobj(θ̃,ϕ)+

num_layers∑
g=1

λgpen gconst(ϕg)
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For the constrained method, the corresponding optimization problems are given by:

Model-wise grouping Layer-wise grouping

min
θ̃,ϕ

fobj(θ̃,ϕ)

s.t. gconst(ϕ) ≤ ϵ

min
θ̃,ϕ

fobj(θ̃,ϕ)

s.t. gconst(ϕg) ≤ ϵg for g ∈ [1 : num_layers]

For example, consider a [din, dhid, dout] 1-hidden layer MLP with input-neuron spar-
sity on both of its two fully connected layers. For simplicity, we ignore the bias in the
description below.

• Grouping at the layer level (akin to “λ sep.” in [LWK18]), would yield G = 2
groups, with din gates in group g = 1. Each gate in group 1 is shared across dhid
parameters in θ̃, thus #(θ̃1) = din · dhid. Similarly for g = 2.

• Grouping at the model level (akin to “λ ∝ 1
N ” in [LWK18]). corresponds to the

case ofG = 1 group comprising with din +dhid gates. Finally, #(θ̃1) = din ·dhid +
dhid · dout gives the total number of parameters in the network.

A similar analysis holds for the case of output feature-map sparsity used in convolu-
tional layers.

a.3 normalizing the l0-norm

Louizos et al. [LWK18] normalize the expected L0-norm of model parameters with re-
spect to the training set sizeN , and not with respect to the number of parameters. This is
done by selecting a λpen = λ/N . In contrast, as stated in Eq. (4.3), we favor normalizing
by the total number of parameters in the model #(θ̃). This yields an expected L0-density
consistently in the range [0, 1] regardless of model architecture.

Optimizationproblems corresponding to each of these normalization schemes (group-
ing gates model-wise, for illustration) are given by:

Ours (Penalized) Louizos et al. [LWK18]
min
θ̃,ϕ

fobj(θ̃,ϕ) + λpen
Ez | ϕ[∥z∥0]

#(θ̃)
min
θ̃,ϕ

fobj(θ̃,ϕ) + λpen
Ez | ϕ[∥z∥0]

N

Therefore, a λpen = λ in the context of our work does not correspond to the same
regularization factor as choosing λpen = λ/N in Louizos et al. [LWK18]. For details
on the number of parameters of each architecture and the associated number of train-
ing examples, see Appx. A.10.1. Note that in certain settings (e.g. CIFAR-10/100) the
number of training points and number of parameters of the model can differ by several
orders of magnitude.

a.4 purging models

In this section, we describe how we transform a model with stochastic gates z and free
parameters θ̃ into a deterministic test-time model. For conciseness, we present the pro-
cedure for convolutional layers. The case of fully connected layers is analogous: simply
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consider the parameter groups to be “all those weights connecting an input neuron to
any neuron in the next layer”.

The procedure for removing filters from the i-th convolutional layer is as follows:

1. For each filter in the layer, compute the test-time value of its associated gate as
described in Appx. A.1.1.

2. Gates with medians ẑj = 0 are considered inactive. The value of an active gate
ẑj > 0 is “absorbed” multiplicatively by its associated weights.

3. Prune the filters associated with inactive gates and their corresponding activa-
tion maps. The kernel entries in the next convolutional layer associated with the
pruned channels in layer i are also removed. If present, weights of the adjacent
batch normalization layer are removed.

4. A new kernel matrix is created for both the i-th and (i + 1)-th layer, and the
remaining kernel weights are copied to the new model.

Thepruning procedure described above guarantees equivalent outputs for the network
before and after pruning under the assumption that the element-wise activation function
h used in the network satisfies h(0) = 0, as is the case for ReLU activations.

Double sparsification. Wehighlight that the pruning of filters of the subsequent layer
in step 3 happens regardless of whether the following layer is sparsifiable or not. This
observation implies that if a model contains adjacent sparsifiable convolutional layers,
the resulting number of active parameters in the second layerwill be affected by its output
sparsity rate, as well as the output sparsity rate of the first layer.

This “double sparsification” leads to a subtle issue when studying the relationship be-
tween the proportion of active gates in the model and the effective number of active pa-
rameters. For example, if 80% of the (output) gates of layer i are active, and 70% of the
(output) gates of layer i+1 are active, the effective number of active parameters in layer
i+ 1 will be∼ 56% = (0.8 · 0.7) and not 70%!

Note that this procedure is identical to that of Li et al. [Li+17, §3.1]. However, our
selection of filters to remove is based a sparsity pattern learned during training, rather
than motivated by a heuristic ranking of the filter norms. We use a similar language and
presentation to facilitate the comparison.

The double sparsification effect arises due to performing structured pruning in adja-
cent layers, while considering groupings (i.e. one gate per output channel) which dis-
regard the sparsity from the previous and next layers. We discuss this issue to provide
clarity when analyzing our results regarding controllability: the goal of our constrained
formulation is to achieve (at most) a certain proportion of expected active gates. Our
experiments demonstrate that we can indeed achieve said control (compare target den-
sity ϵ with L0-density columns throughout all tables). Addressing the issue of “double
sparsification” in structured pruning is beyond the scope of our work.

Parameters and MACs. To achieve fair comparisons between models trained using
different techniques (e.g. penalized, constrained or magnitude pruning) we apply the
same purging procedure to all models. For all of the experiments presented in the pa-
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per, the reported parameter and MAC* counts are calculated based on the determin- * A MAC operation
modifies an accumulator a
as a← a+ (b× c).

istic, purged models. The number of MACs corresponds to the number of multiply-
accumulate operations involved in a forward pass through the network.

In the case ofmagnitude pruning, steps 1 is replacedwith the ranking-and-thresholding
operation of Li et al. [Li+17]. This results (conceptually) in binary 0-1 values for the gates
associated with each of the filters, required in step 2.

a.5 bisection search

We execute a bisection search algorithm on the (logarithmic) value of λpen, aiming to
achieve a model L0-density of 50%(±1%). Fig. A.1 shows the results for experiments
with parameter groupings model- and layer-wise.
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Figure A.1: Iterations of bisection search on the logarithmicλpen space for achieving amodel den-
sity of 50%(±1%). Annotations represent iteration indices, with endpoints labelled
as 0. We report the L0-density of MLPs after 150 training epochs. On the left, param-
eters are grouped layer-wise and groups share a fixed λpen; on the right, parameters
are grouped at the model level.

Although bisection search successfully finds a penalty value which achieves the de-
sired density, it required the execution of at least 6 complete training cycles to be within
1% of the target. Performing such a high number of repeated experiments for tuning
λpen can be in-admissibly costly in real applications. Moreover, we chose the endpoint
values such that their resulting densities enclosed the target, reducing the difficulty of
the search problem. While bisection search is by no means the optimal approach to ad-
justλpen, these experiments highlight the tunability challenges associated with penalized
methods.

a.6 constrained optimization: theory & further algorithms

Recall that a pure Nash equilibrium of the min-max game in Eq. (4.4) corresponds to
a saddle point of the Lagrangian and determines an optimal, feasible solution [Neu28].
However, for non-convex problems such pure Nash equilibria might not exist, and thus
simultaneous gradient descent-ascent (GDA) updates can potentially lead to oscillations
in the parameters. [cotter2019; LJJ20].
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There has been extensive research in the saddle-point optimization community study-
ing in these type of problems. In particular, for convex-concave problems there are (non-
)asymptotic convergence guarantees for averaged iterates from GDA with equal step-
sizes [Kor76; CR97; Nem04]. Lin et al. [LJJ20] present a comprehensive bibliography
of studies focusing on nonconvex-concave problems, as is the case for the Lagrangian in
Eq. (4.4). The authors also present non-asymptotic complexity results showing that two-
timescale GDA can find stationary points for nonconvex-concave minimax problems
efficiently.

Cotter et al. [Cot+19b] propose an algorithm for non-convex constrained problems
that returns an approximately optimal and feasible solution, consisting of a pair of mixed
strategies (with support size of at most m + 1 for a problem with m constraints). Ex-
perimentally we observed convergent, non-oscillatory behavior when using simultane-
ous updates for solving the problem in Eq. (4.4) employing pure strategies, i.e., a single
instance of primal and dual variables. This is discussed in detail in Section 4.5.4 and
Appx. A.7.

Other approaches, such as extragradient [Kor76], provide better convergence guaran-
tees for games like Eq. (4.4), compared to GDA. However, extragradient requires twice
as many gradient computations per parameter update and the storage of an auxiliary
copy of all trainable parameters. Nonetheless, extrapolation from the past [Gid+19b]
enjoys similar convergence properties to extragradient without requiring a second gradi-
ent computation. Our preliminary experiments showed no significant difference in per-
formance when using extragradient-based updates. These techniques can be useful for
mitigating oscillatory behavior when applying Lagrangian-based optimization to other
constrained problems.

a.7 training dynamics and dual restarts

In this sectionweprovide further details on the training dynamics of our gradient descent-
ascent approach for solving the Lagrangian in Eq. (4.4). Fig. A.2 displays the training dy-
namics for a LeNet model on the MNIST dataset using model-wise density constraints
of 30% and 70%, as well as whether or not using dual restarts. The experimental setup
for this section matches that of Appx. A.10.3.

We employ the same learning rate for both cases. Since the left column corresponds
to a constraint yielding a more sparse model, the initial constraint violations are larger.
In consequence, the magnitude of the Lagrange multiplier, which accumulates the con-
straint violations, is also larger for the 30% case (compare the scale of the vertical axis in
the plots of the second row).

The horizontal dashed line in the first row signals the desired density for each of the
cases. Note that all models become feasible: blue and orange lines are at or below the
density target.

However, not employing dual restarts leads to themodel being ”excessively” sparsified:
the orange line overshoots past the desired density level. While in principle this behavior
is not “wrong” since the constraint is satisfied, it can lead to slow learning and decreased
performance. Note that our constrained formulation leads to a natural monotonicity
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Figure A.2: Effect of the dual restarts scheme on the training dynamics for LeNet models on
MNIST using model-wise constraints with target densities of 30% and 70%.

property in the constraints: if ϵ′ < ϵ, the best performance achievable by a ϵ-dense
model is greater than or equal to the best performance achievable by an ϵ′-dense model.

When dual restarts are applied, the contribution of the accumulated constraint viola-
tion to the Lagrangian is removed once the constraints are satisfied. Thus, the optimiza-
tion is mainly guided towards minimizing the training loss (see plots in third row).

This ability to focus in reducing the loss usually come at the expense of increased
density: note the slight ”bounces” in model density. After reaching feasibility, models
trained with dual restarts present small increases in density which are quickly mitigated
by further growth of the multiplier. As demonstrated throughout our experiments, we
can reliably achieve models that are feasible or within (∼ 1%) of the desired target level.
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a.7.1 Dual restarts as best-responses

Ourproposed “dual restart” scheme is theoreticallymotivated as a choice of best-response
from the dual player when the constraints are satisfied. Without loss of generality, we
present the argument below in the case of a single inequality constraint. When there are
multiple inequality constraints, the best response problem for the dual player decouples
into individual problems for each of the Lagrange multipliers.

Given choices [θ, ϕ] by the primal player, consider the optimization problem faced by
the dual player:

λBR
co (θ̃, ϕ) = argmax

λco≥0

L(θ̃, ϕ, λco) = argmax
λco≥0

fobj(θ̃,ϕ)+λco (gconst(ϕ)− ϵ) (A.6)

This is a linear optimization problem with a trivial solution: if the constraint is being
satisfied (gconst(ϕ) − ϵ < 0), then λBR

co = 0. If the constraint is satisfied with equality,
λBR

co = R+. Finally, if the constraint is violated (gconst(ϕ)− ϵ > 0), then λBR
co =∞.

In summary, applying dual restarts corresponds to updating the value of the Lagrange
multiplier following a best response for the dual player, regardless of the current value
of the Lagrange multiplier! However, note that the same reasoning cannot be applied to
the case of violated constraints: stability and overflow issues render a choice of∞ for a
Lagrange multiplier to be impractical for a numerical implementation.

Finally, we emphasize that while gradient ascent is an effective and simple tool for
updating the Lagrange multipliers, further empirical and theoretical investigation on
the influence of the dual update scheme could be beneficial.

a.8 learning sparsity-controlled (wide)resnets

ResNets have been a challenging setting for L0-penalty basedmethods. Gale et al. [GEH19]
trained WideResNets (WRNs) [ZK16] and ResNet50 [He+16] using the penalized L0-
regularization framework of Louizos et al. [LWK18], and reported being unable to pro-
duce sparse residual models without significantly compromising performance.* Our
initial experiments on WRNs confirmed a similar behavior.

We detect two main modifications that enable us to learn WRNs and ResNets with
controllable sparsity, while retaining good performance: 1© increasing the learning rate
of the stochastic gates, shown in Fig. A.3; and 2© removing the gradient contribution of
the weight decay penalty towards the gates, displayed in Fig. A.4.

For conciseness, we present these observations in the case of WideResNets. We adopt
the two adjustments presented in this section for our experiments involvingWideResNet-
28-10, ResNet18 and ResNet50 models. These two simple modifications allowed us
to achieve reliable controllability for (Wide)ResNets without performance degradation,

*Gale et al. [GEH19] state: “Across hundreds of experiments, our [ResNet50] models were either able
to achieve full test set performance with no sparsification, or sparsification with test set performance akin
to random guessing.”; and “Applying our weight-level L0 regularization implementation to WRN produces a
model with comparable training time sparsity, but with no sparsity in the test-time parameters. For models
that achieve test-time sparsity, we observe significant accuracy degradation on CIFAR-10.”
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Figure A.3: Distribution of gate medians for
the first layer of a WRN, at the
end of (penalized) training using
λpen = 10−3.
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just as with the MLP and LeNet architectures.

Further exploration of thesemodifications, and their influence in the resulting sparsity
of the model are provided in Appx. A.9.

a.8.1 Achieving sparsity in (Wide)ResNets by tuning the learning rate of the gates.

Replicating the CIFAR10 experiments of Louizos et al. [LWK18] on WRNs using their
choice of regularization parameter and learning rate for the stochastic gates, results in a
distribution of the stochastic gates which does not induce sparsity in the model. Fig. A.3
shows (in red) the distribution of the gate medians in the first layer of a WRN trained us-
ing a learning rate of ηϕprimal = 0.1 for the gates parameters, as in Louizos et al. [LWK18].
We observed that this distribution of medians did not change significantly during train-
ing. Thus, since the model has a high initial density, the gate parameters at the end of
training do not induce any sparsity.

To enable the gate parameters to effectively change during training, we decoupled the
learning rate of the gates ηϕprimal, from that of themodelweights ηθ̃primal. Fig. A.3 illustrates
how increasing ηϕprimal from 0.1 to 6 leads to a drastically different distribution for the
gate medians. This simple change results in a distribution of medians which exhibits the
desired concentration behavior: a non-negligible proportion of gates have a median of
zero, and are therefore inactive (see Appx. A.1.1).

We adopt this learning rate adjustment in all our WRN experiments. Table A.10
presents the performance of WRNs trained using different values of ηϕprimal, for both
the constrained and penalized settings. Note how the models using a higher learning
rate for the gates parameters successfully achieve sparsity without any compromise in
performance.

a.8.2 A loophole in weight-decay leads to excessive regularization.

This section includes the adjustment to the learning rate of the gates presented above. We
noticed a systematic over-sparsification behavior inWRNswhen solving the constrained
formulation: the constraint is satisfied, well beyond the prescribed density level.
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This issue is illustrated in Fig. A.4. Dashed lines correspond to the weight decay from
Louizos et al. [LWK18] and solid lines correspond to our method with the modified
weight decay as in Eq. (A.7). Experimental details for CIFAR-10 experiments are pro-
vided in Appx. A.10.4.

We identified the cause of this phenomenon to be the L2 weight decay term in the
training objective of WRNs from Louizos et al. [LWK18] (see Section 4.2). This penalty
term depends both on the probability of gates being active πj = P[zj 6= 0], as well as the
norm of the signed magnitudes θ̃2j . Reducing the value of this penalty could be achieved
by turning off gates, such that the contribution of their associated magnitudes is ignored.
This behavior is undesirable for the purpose of controllability.

We propose to restrict the effect of the weight decay penalty to θ̃, as a way to reduce
the parameter magnitudes, and keep the gates deactivation under the sole influence of
the constraint violation term. We achieve this by stopping (also known as detaching)
the gradients from propagating through the gate-dependent terms in the L2 norm:

Ez|ϕ

[
‖θ̂‖22

]
=

|θ|∑
j=1

stop-grad(πj) θ̃
2
j . (A.7)

Fig. A.4 shows the effect of this simple adjustment when applying a model-wise con-
straint on a WRN for the CIFAR10 dataset. Note how, removing the influence of weight
decay on the gate parameters allows us to reliably achieve the desired target density, with-
out over-sparsifying the model.

a.9 test-time gates: influence of learning rate and weight-
decay

Recall that wemake the gates “freeze” the gates at their medians to obtain a deterministic
model to evaluate on unseen data (Appx. A.1.1). We analyze the behavior of gates at
test-time by considering histograms of their medians across specific layers of models.** Note the subtle detail that

these histograms are based
on a statistic (the median)

of a probability distribution
and do not represent

distributions of gates by
themselves.

This section provides further empirical evidence to support the hypothesis presented in
Appx. A.8 (see Appx. A.10.4 for experiment setup).

Fig. A.5 contains histograms for the first layer of an MLP and a LeNet trained to clas-
sify MNIST digits. These correspond to a fully connected and a convolutional layer,
respectively. Sparsity requirements are specified via layer-wise constraints with a target
density of 70% on both cases. Experimental details for these runs match those presented
in Appx. A.10. Test-time gate medians are measured at the end of the training epochs
shown in the panel titles.

At initialization, the distributions of different gates are highly similar and yield closely
packedmedians. These aremostly fractional in value, away frombeing 0 or 1. As training
progresses, the medians drift apart. Histograms peak at 0 and 1 as of the 50th epoch. As
expected, approximately 30% = (100− 70)% of gates are inactive at the end of training.

Fig. A.6 contains histograms of the test-time gates associated with the first convolu-
tional layer of various WRNs-28-10 trained on CIFAR10. The proportion of gates at
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Figure A.5: Histograms of gate medians in first layer of MLP and LeNet models. Note the tran-
sition from highly concentrated around a fractional value of 0.8 at the first epochs,
towards an approximately binary distribution peaking at 0 and 1 at the last epoch.
These models were trained on MNIST with a layer-wise target density of 70%.

zero specifies the amount of inactive gates, while bars in (0, 1] correspond to active gates.
Since all histograms have different scales, we provide a reference line for each, corre-
sponding to half the height of the tallest bar in said histogram. For example, if the dashed
line is labeled as 15%, then the highest bar in that histogram corresponds to 30%.

We consider 6 configurations spanning: three learning rates for the gate parameters
ϕ; and whether or not to remove the gradient contribution of the weight decay towards
the gates (see Appx. A.8). All experiments use the same initialized model. Sparsity re-
quirements are specified via layer-wise constraints with a target density of 70% on all
cases. Measurements of the gate medians are made at the end of each of the presented
epochs.

Medians do not drift apart noticeably when employing ηϕprimal = 0.1. In addition,
they maintain fractional values (i.e., remain away from 0 and 1). Given our protocol for
choosing gates at test-time in Appx. A.1.1, this would lead to a “fully dense” test-time
network, which violates the required sparsity constraints by a wide margin. Similar to
Gale et al. [GEH19], we observed that when aWRN trained with ηϕprimal = 0.1 achieved
any significant degree of sparsity, it led to a performance akin to random guessing. Note
that, unsurprisingly, the bulk of the medians gets closer to zero: this is a consequence of
the model aiming to satisfy the constraint on the expectation of the L0-norm.

The behavior when training with ηϕprimal = 1 and ηϕprimal = 6 stands in clear contrast
to that of ηϕprimal = 0.1. The former two resemble more closely the dynamics observed
in Fig. A.5, where medians disperse and tend to accumulate and saturate at 0 or 1. Un-
surprisingly, this accumulation happens more quickly for experiments with ηϕprimal = 6.
This setting also has the smallest proportion of fractional medians at the end of training.
Note that in the case of ηϕprimal = 1, longer training could result in a similar outlook to
that of ηϕprimal = 6. Choosing ηϕprimal > 1 in our experiments led to better performance
in terms of test-time error.

Finally, note how† removing the gradient contribution of the weight decay towards † Except for the undesirable
setting ηϕprimal = 0.1, as
discussed in Appx. A.8.

the gates (WDwith sg(z)) yields yields test-timemodels which have approximately 30%
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Figure A.6: Histograms of gate medians for the first convolutional layer of WRN models trained
on CIFAR10 under 70% layer-wise density constraints. Configurations comprise three
learning rates ηϕprimal, and removing or not the gradient contribution of the weight decay to-
wards the gate updates.

of their parameters inactive, as desired. Not removing this contribution (WD without
sg(z)) results in over-sparsification: the distribution of gate medians is shifted towards
zero for all learning rate choices. For example, consider the panels at the last epoch for
ηϕprimal = 1 and ηϕprimal = 6. The experiments with detaching result in models whose
sparsity is close to the desired sparsity level (peak at 0 close to 30%). In contrast, when
not detaching, the rate of inactive gates is around 60%, twice as sparse as required.

a.10 experimental details

Our implementation is developed in Python 3.8, using Pytorch 1.11 [Pas+19] and the
Cooper constrained optimization library [Gal+24]. We provide scripts to replicate the
experiments in this paper at: https://github.com/gallego-posada/constrained_sparsity.

All our models use ReLU activations. Throughout our experiments 1© we decouple
the learning rates used for the weights and gates of the network, and 2©when employing
weight decay, we remove the gradient contribution of the penalty towards the gates, as
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explained in Appx. A.8.

a.10.1 Model statistics

Table A.2 describes the different architectures used throughout our experiments in terms
of their total number of trainable parameters and the computational cost involved in a
forward calculation in MACs (multiply-accumulate operations). We also provide details
on the input size and the number of training examples for their respective datasets.

Table A.2: Count of parameters and MACs for all architectures used in this paper, along with
dimension and number of training examples.

Model Type Parameters MACs Input size Train set size Dataset

MLP 266k 267k (28, 28) 50k MNIST
LeNet 431k 2,327M (28, 28) 50k MNIST

WideResNet-28-10 36.5M 5,959M (3, 32, 32) 50k CIFAR-10/100
ResNet18 11.3M 6,825M (3, 64, 64) 100k TinyImageNet
ResNet50 25.5M 4,120M (3, 224, 224) 1.2M ImageNet

a.10.2 Dual optimizer

Note that the constraint functions considered throughout this work involve expectations
but can be computed in closed-form based on the parameters of the gates (Appx. A.1).
Therefore, the computation of constraint violations is deterministic. We employ gradient
ascent on the Lagrange multipliers. We initialize all Lagrange multipliers at zero. Details
on the chosen dual learning rate, along with the use of dual restarts are provided for each
experiment below.

a.10.3 MNIST

Following Louizos et al. [LWK18], our experiments on MNIST classification consider
two different architectures: i) an MLP with 2 hidden layers with 300 and 100 units re-
spectively, and ii) a LeNet-5 network, consisting on convolutional layers of 20 and 50
output channels, each succeeded by a max-pooling layer with stride 2; followed by two
fully connected layers of 800 and 500 input dimensions. All fully connected layers in
these models use input neuron sparsity, and all convolutional layers (for LeNet models)
employ output feature map sparsity.

Table A.3: Default configurations for MLP and LeNet5 experiments on MNIST.

Approach Weights Gates Lagrange Multipliers
Optim. ηθ̃primal Optim. ηϕprimal Optim. ηdual Restarts

Constrained Adam 7 · 10−4 Adam 7 · 10−4 Grad. Ascent 10−3 Yes
Penalized - - -
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Table A.3 presents the hyper-parameters used for learning sparse MLPs and LeNets.
Both cases employ the same configuration for the primal optimizer: Adam [adam] with
(β1, β2) = (0.9, 0.999), as provided by default in Pytorch, with a batch size of 128.
These experiments do not use weight decay.

a.10.4 CIFAR-10 and CIFAR-100

WeemployWideResNet-28-10 (WRN)models [ZK16] for the tasks of classifyingCIFAR-
10 and CIFAR-100 images. Akin to Louizos et al. [LWK18], the first convolutional layer
in each residual block uses output feature map sparsity, whereas the following convolu-
tional layer and the residual connection are kept to be fully dense. This model counts
with 12 sparsifiable convolutional layers.

Table A.4 presents the hyper-parameters used for learning sparseWRNs. We use SGD
with a momentum coefficient of 0.9 for the weights and gates. We use a batch size of
128 for 200 epochs. The primal learning rate is multiplied by 0.2 at 60, 120 and 160
epochs. This mimics the training procedure of Zagoruyko and Komodakis [ZK16]
and Louizos et al. [LWK18]. These experiments use ρinit = 0.3 (see Appx. A.1.2).

Table A.4: Default configurations for WideResNet-28-10 experiments on CIFAR-{10, 100}.

Approach Weights Gates Lagrange Multipliers Weight decay
Optim. ηθ̃primal Optim. ηϕprimal Optim. ηdual Restarts coefficient

Constrained SGDM 0.1 SGDM 6
Grad. Ascent 7 · 10−4 Yes

5 · 10−4

Penalized - - -

a.10.5 TinyImageNet

We employ ResNet18 models for the task of classifying TinyImageNet [LKJ17] images.
The model’s initial convolutional and final fully connected layers are kept fully dense.
The residual connection of each BasicBlock in the model is kept fully dense, while all
other convolutional layers employ output feature-map sparsity. This model thus counts
with 16 sparsifiable convolutional layers.

Table A.5 presents the hyper-parameters used for learning sparse ResNet18s. We use
SGD with a momentum coefficient of 0.9 for the weights and gates. We use a batch size
of 100 for 120 epochs. The learning rate of the weights ηθ̃primal is multiplied by 0.1 at 30,
60 and 90 epochs. Thismimics the training procedure of previous works [Kun+20]. This
experiment uses ρinit = 0.3 (see Appx. A.1.2).

a.10.6 ImageNet

We employ ResNet50 models for the task of classifying ImageNet [Den+09] images. The
model’s initial convolutional and final fully connected layers are kept fully dense. The
residual connection of each Bottleneck block in the model is kept fully dense, while all
other convolutional layers employ output feature-map sparsity. This model thus counts
with 48 sparsifiable convolutional layers.
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Table A.5: Default configurations for ResNet18 experiments on TinyImageNet.

Approach Grouping Weights Gates Lagrange Multipliers Weight decay
Optim. ηθ̃primal Optim. ηϕprimal Optim. ηdual Restarts coefficient

Constrained Model

SGDM 0.1 SGDM 1

Grad. Ascent 8 · 10−4

Yes
5 · 10−4Layer 1 · 10−4

Penalized Model - - -
Layer - - -

Due to the high computational cost of ImageNet experiments, and the tunability issues
of the penalized method, we do not perform penalized experiments for this dataset.

Table A.6: Default configurations for ResNet50 experiments on ImageNet.

Approach Grouping Weights Gates Lagrange Multipliers Weight decay
Optim. ηθ̃primal Optim. ηϕprimal Optim. ηdual Restarts coefficient

Constrained Model SGDM 0.1 SGDM 1 Grad. Ascent 3 · 10−4

Yes 10−4

Layer 3 · 10−5

Table A.6 presents the hyper-parameters used for learning sparse ResNet50s. SGD
with a momentum coefficient of 0.9 is used for the weights and the gates. We use a batch
size of 256 for 90 epochs. The learning rate of the weights ηθ̃primal is multiplied by 0.1 at
30 and 60 epochs. This mimics the training procedure of previous works [SSM20].

Initialization of the gates

As discussed in Appx. A.1.2, the choice of hyperparameter ρinit affects the initial spar-
sity of the network. For their experiments usingWideResNetmodels on theCIFAR10/100
datasets, Louizos et al. [LWK18] chose ρinit = 0.3. When executing our experiments
with ResNet50 models on ImageNet, we noticed that this hyper-parameter of the L0-
reparametrization can have a significant impact in the behavior of themodel throughout
training.

0 20 40 60 80
Epoch

20

40

60

80

Tr
ai

ni
ng

 E
rr

or
 (%

)

0 20 40 60 80
Epoch

20

40

60

80

Va
lid

at
io

n 
Er

ro
r (

%
)

Dense Baseline init = 0.3 init = 0.05

Figure A.7: Effect of the initialization hyper-parameter ρinit for training ResNet50s on ImageNet.

Fig. A.7 shows the training and validation error of two different runs at a target density
of 70%with ρinit = 0.3 and ρinit = 0.05. Although both runs achieve the desired sparsity
target, themodel initialized at ρinit = 0.05 outperforms themodel initializedwith ρinit =
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0.3. This performance improvement persists throughout training, resulting in a final
model with a better validation error.

Recall that we consider fixed values for the parameters β, γ and ζ associated with the
concrete distribution, as detailed in Table A.1. With these values, Eq. (A.5) yields that
the initial L0-density of the model initialized with ρinit = 0.3 is 92.03%, while for ρinit =
0.05, the L0-density of the initial model is 98.95%. This means that the case ρinit = 0.3
starts from a (in expectation)∼ 7% sparsermodel; thus unnecessarily restring themodel
capacity at the beginning of training. This is consistent with the behavior displayed in
Fig. A.7: the model initialized with ρinit = 0.05 follows more closely the validation
performance of a dense baseline (i.e. a standard ResNet50 without gates).

Considering this behavior, for all the ImageNet results reported below we use the
lower value of ρinit = 0.05. For other models and datasets, we employ the value used in
Louizos et al. [LWK18] for ease of comparison.

a.10.7 Magnitude pruning comparison on ImageNet

We compare the performance of our in-training sparsity method with structured magni-
tude pruning. We start fromapre-trainedResNet50model fromPytorch (torchvision.
models.resnet50) and apply layer-wise pruning following the procedure of Li et al.
[Li+17] to the same layers that were sparsifiable for our ImageNet models, described
in Appx. A.10.6. After performing magnitude pruning, we fine-tune the models for 20
epochs on the ImageNet dataset, using SGDwithmomentum of 0.9 and a constant learn-
ing rate of 0.001. This matches the fine-tuning setting of Li et al. [Li+17].

a.10.8 Sparsity collapse

Some of the results for the penalized method presented in Appx. A.11 are labeled as
“Failed due to sparsity collapse”. This means that the penalty factor was too high and
resulted in all the gates of a layer being turned off.

a.11 comprehensive experimental results

In this section we provide complete results for all experiments, whose hyper-parameter
configurations can be found inAppx. A.10. Tomake the navigation of these results easier,
we repeat some of the tables and figures provided in the main paper. These repetitions
are clearly marked in the caption of the corresponding resource.
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a.11.1 MNIST

Table A.7: Achieved density levels and performance for sparse MLP and LeNet5 models trained
on MNIST for 200 epochs. Metrics aggregated over 5 runs. †Results by Louizos et al.
[LWK18] with N representing the training set size (see Appx. A.3). This table is the same as
Table 4.1. We repeat it here for the reader’s convenience.

Architecture Grouping Method Hyper-parameters
Pruned Val. Error (%)

architecture best at 200 epochs
avg± 95% CI

Model Pen. †λpen = 0.1/N 219-214-100 1.4 –
MLP Const. ϵ = 33% 198-233-100 1.36 1.77± 0.08

784-300-100 Layer Pen. †λpen = [0.1, 0.1, 0.1]/N 266-88-33 1.8 –
Const. ϵ = [30%, 30%, 30%] 243-89-29 1.58 2.19± 0.12

Model Pen. †λpen = 0.1/N 20-25-45-462 0.9 –
LeNet5 Const. ϵ = 10% 20-21-34-407 0.56 1.01± 0.05

20-50-800-500 Layer Pen. †λpen = [10, 0.5, 0.1, 0.1]/N 9-18-65-25 1.0 –
Const. ϵ = [50%, 30%, 70%, 10%] 10-14-224-29 0.7 0.91± 0.05
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Figure A.8: Training sparse MLP models on MNIST.
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Table A.8: Achieved density levels and performance for sparse MLP models trained on MNIST
for 200 epochs. Metrics aggregated over 5 runs.

Method Hyper-params L0-density (%) Params (%) MACs (%) Val. Error (%)
best at 200 epochs

Constrained
g ∈ [1 : 3]
Layer-wise

ϵg = 20% 23.28±0.31 3.41±0.16 3.43±0.16 1.65 2.82±0.31
ϵg = 35% 36.02±0.08 10.59±0.17 10.62±0.17 1.66 2.03±0.13
ϵg = 50% 50.42±0.04 23.60±0.14 23.63±0.14 1.58 1.76±0.15
ϵg = 65% 65.07±0.03 42.43±0.51 42.46±0.51 1.42 1.72±0.01
ϵg = 80% 80.08±0.07 65.53±0.76 65.55±0.76 1.38 1.54±0.05

Penalized
g ∈ [1 : 3]
Layer-wise

λgpen = 1 28.16±0.97 3.58±0.51 3.60±0.51 2.62 2.93±0.09
λgpen = 0.1 59.97±0.09 33.29±0.06 33.32±0.06 1.37 1.83±0.07
λgpen = 0.01 90.18±0.22 99.15±0.94 99.15±0.94 1.29 1.44±0.13
λgpen = 0.001 93.77±0.10 99.23±0.22 99.23±0.22 1.33 1.60±0.10
λgpen = 0.0001 94.04±0.23 99.67±0.38 99.67±0.38 1.26 1.51±0.04

Constrained
Model-wise

ϵ = 20% 22.77±0.17 12.80±0.41 12.87±0.41 1.40 2.11±0.05
ϵ = 35% 36.25±0.06 30.07±0.39 30.16±0.39 1.37 1.75±0.11
ϵ = 50% 50.89±0.12 49.71±0.27 49.78±0.27 1.20 1.46±0.16
ϵ = 65% 65.37±0.01 65.57±0.22 65.62±0.22 1.27 1.50±0.03
ϵ = 80% 80.02±0.05 77.08±0.86 77.11±0.86 1.16 1.46±0.16

Penalized
Model-wise

λpen = 1 27.73±0.15 18.54±0.51 18.62±0.52 1.48 1.91±0.07
λpen = 0.1 62.38±0.16 62.37±0.3 62.43±0.3 1.30 1.53±0.13
λpen = 0.01 90.98±0.18 99.56±0.43 99.56±0.43 1.34 1.51±0.11
λpen = 0.001 93.81±0.17 99.89±0.22 99.89±0.22 1.24 1.57±0.09
λpen = 0.0001 93.99±0.06 99.67±0.38 99.67±0.38 1.32 1.60±0.17
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Figure A.9: Training sparse LeNet models on MNIST.
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Table A.9: Achieved density levels and performance for sparse LeNet models trained on MNIST
for 200 epochs. Metrics aggregated over 5 runs.

Method Hyper-params L0-density (%) Params (%) MACs (%) Val. Error (%)
best at 200 epochs

Constrained
g ∈ [1 : 4]
Layer-wise

ϵg = 20% 20.09±0.07 2.36±0.14 4.68±0.68 0.81 1.20±0.08
ϵg = 35% 35.01±0.01 8.59±0.03 11.65±1.15 0.69 0.84±0.08
ϵg = 50% 50.02±0.01 21.38±0.77 24.03±1.64 0.56 0.69±0.07
ϵg = 65% 65.02±0.01 44.01±2.16 43.38±2.39 0.53 0.65±0.09
ϵg = 80% 80.04±0.02 76.62±0.99 68.83±1.40 0.45 0.60±0.04

Penalized
g ∈ [1 : 4]
Layer-wise

λgpen = 1 14.58±0.44 0.67±0.13 2.60±0.17 0.46 1.7±0.14
λgpen = 0.1 37.38±0.49 7.06±0.36 14.62±1.68 0.54 0.85±0.02
λgpen = 0.01 90.63±0.20 96.43±0.83 88.52±7.17 0.40 0.56±0.03
λgpen = 0.001 92.77±0.06 99.75±0.12 99.95±0.02 0.47 0.60±0.05
λgpen = 0.0001 92.96±0.04 99.87±0.12 99.98±0.02 0.47 0.64±0.06

Constrained
Model-wise

ϵ = 20% 20.27±0.30 16.58±0.73 73.67±0.14 0.54 0.85±0.09
ϵ = 35% 35.06±0.09 31.36±0.27 85.47±0.85 0.55 0.71±0.03
ϵ = 50% 50.58±0.09 49.41±0.29 90.18±0.94 0.44 0.64±0.03
ϵ = 65% 65.47±0.05 69.60±1.06 94.37±0.20 0.44 0.72±0.03
ϵ = 80% 80.36±0.08 91.86±0.79 98.49±0.15 0.46 0.58±0.03

Penalized
Model-wise

λpen = 1 13.01±0.81 8.79±0.80 50.47±4.74 0.71 0.92±0.11
λpen = 0.1 42.25±0.83 41.03±1.12 89.08±0.21 0.45 0.74±0.04
λpen = 0.01 90.78±0.20 99.78±0.20 99.96±0.04 0.44 0.63±0.05
λpen = 0.001 92.80±0.01 100±0.00 100±0.00 0.43 0.59±0.01
λpen = 0.0001 92.97±0.03 99.94±0.12 99.99±0.02 0.45 0.59±0.07

a.11.2 CIFAR-10

Table A.10: Achieved density levels and performance for sparse WideResNets-28-10 models
trained on CIFAR-10 for 200 epochs. Metrics aggregated over 5 runs. †Result re-
ported by Louizos et al. [LWK18], withN denoting the training set size (see Appx. A.3).

Method Hyper-params ηϕprimal L0-density (%) Params (%) MACs (%)
Val. Error (%)

best at 200 epochs
(avg± 95% CI)

Penalized

†λpen = 0.001/N 0.1 – – – 3.83 –
†λpen = 0.002/N 0.1 – – – 3.93 –
λpen = 0.001 0.1 92.30±0.01 99.84±0.00 100±0.00 4.23 4.56±0.18
λpen = 0.001 6 91.19±0.16 93.98±0.24 91.57±0.35 3.75 4.04±0.15
λpen = 0.002 6 91.36±0.11 94.26±0.22 92.10±0.46 3.62 4.05±0.14

Constrained ϵg = 100% 0.1 92.34±0.01 99.84±0.00 100±0.00 4.18 4.63±0.14

g ∈ [1 : 12]
ϵg = 100% 6 91.63±0.27 94.52±0.26 92.75±0.58 3.74 4.12±0.08
ϵg = 70% 6 70.00±0.00 69.87±0.20 69.55±0.17 3.76 4.10±0.16
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Figure A.10: Training sparse WideResNet-28-10 models on CIFAR-10. This figure is the same as
Fig. 4.4. We repeat it here for the reader’s convenience.

Table A.11: Achieved density levels and performance for sparse WideResNet-28-10 models
trained on CIFAR-10 for 200 epochs. Metrics aggregated over 5 runs.

Method Hyper-params L0-density (%) Params (%) MACs (%) Val. Error (%)
best at 200 epochs

Constrained
g ∈ [1 : 12]
Layer-wise

ϵg = 20% 20.00±0.02 16.24±0.20 16.10±0.23 4.05 4.28±0.16
ϵg = 35% 34.99±0.01 30.80±0.34 31.05±0.23 3.8 4.13±0.13
ϵg = 50% 50.00±0.01 46.54±0.21 46.79±0.28 3.87 4.12±0.21
ϵg = 65% 64.99±0.01 63.74±0.33 63.63±0.27 3.7 4.02±0.11
ϵg = 80% 80.00±0.00 82.10±0.32 81.60±0.34 3.69 3.96±0.15

Penalized
g ∈ [1 : 12]
Layer-wise

λgpen = 1 —— Failed due to sparsity collapse ——
λgpen = 0.1 16.09±0.14 13.43±0.11 11.54±0.29 4.23 4.56±0.09
λgpen = 0.01 61.83±0.86 62.10±0.97 50.91±0.62 3.83 4.05±0.02
λgpen = 0.001 89.81±0.06 92.55±0.13 88.91±0.15 3.7 3.93±0.15
λgpen = 0.0001 91.54±0.33 94.41±0.48 92.18±0.94 3.81 4.03±0.05

Constrained
Model-wise

ϵ = 20% 20.22±0.01 18.91±0.03 35.62±0.84 3.95 4.35±0.25
ϵ = 35% 35.07±0.03 34.55±0.08 55.87±1.23 3.76 4.13±0.27
ϵ = 50% 50.00±0.01 49.21±0.33 67.53±0.08 3.79 4.02±0.06
ϵ = 65% 65.01±0.01 64.65±0.34 77.02±0.43 3.80 3.99±0.14
ϵ = 80% 80.01±0.00 81.96±0.12 85.11±0.58 3.83 3.93±0.09

Penalized
Model-wise

λpen = 1 14.07±0.23 12.09±0.24 21.92±0.59 4.23 4.43±0.10
λpen = 0.1 48.08±2.05 48.50±2.27 64.58±1.57 3.87 4.02±0.22
λpen = 0.01 88.89±0.31 91.85±0.47 90.76±0.77 3.72 3.90±0.18
λpen = 0.001 91.24±0.20 94.17±0.24 92.34±0.22 3.59 3.84±0.25
λpen = 0.0001 91.98±0.42 94.75±0.31 92.68±0.36 3.91 4.13±0.09
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a.11.3 CIFAR-100

Table A.12: Achieved density levels and performance for sparse WideResNets-28-10 models
trained on CIFAR-100 for 200 epochs. Metrics aggregated over 5 runs. †Result
reported by Louizos et al. [LWK18], with N denoting the training set size (see
Appx. A.3).

Method Hyper-params ηϕprimal L0-density (%) Params (%) MACs (%)
Val. Error (%)

best at 200 epochs
(avg± 95% CI)

Penalized

†λpen = 0.001/N 0.1 – – – 18.75 –
†λpen = 0.002/N 0.1 – – – 19.04 –
λpen = 0.001 0.1 93.20±0.01 100.00±0.00 100.00±0.00 21.01 21.70±0.19
λpen = 0.001 6 90.64±0.32 90.88±0.41 89.94±0.71 18.51 19.14±0.21
λpen = 0.002 6 90.13±0.45 90.19±0.38 89.52±0.57 18.99 19.24±0.14

Constrained ϵg = 100% 0.1 93.20±0.01 100.00±0.00 100.00±0.00 21.02 21.66±0.21

g ∈ [1 : 12]
ϵg = 100% 6 90.77±0.31 90.99±0.25 89.74±0.29 18.68 19.08±0.16
ϵg = 70% 6 69.99±0.01 68.62±0.08 68.59±0.22 18.88 19.37±0.15
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Figure A.11: Training sparse WideResNet-28-10 models on CIFAR-100.
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Table A.13: Achieved density levels and performance for sparse WideResNet-28-10 models
trained on CIFAR-100 for 200 epochs. Metrics aggregated over 5 runs.

Method Hyper-params L0-density (%) Params (%) MACs (%) Val. Error (%)
best at 200 epochs

Constrained
g ∈ [1 : 12]
Layer-wise

ϵg = 20% 20.20±0.00 16.94±0.06 16.30±0.08 20.67 21.07±0.19
ϵg = 35% 35.03±0.02 31.97±0.14 31.27±0.08 19.71 20.26±0.37
ϵg = 50% 49.97±0.03 47.30±0.31 46.87±0.31 19.58 19.87±0.21
ϵg = 65% 64.99±0.02 63.11±0.05 63.01±0.17 18.89 19.37±0.27
ϵg = 80% 79.82±0.15 79.33±0.30 79.29±0.43 18.93 19.32±0.21

Penalized
g ∈ [1 : 12]
Layer-wise

λgpen = 1 —— Failed due to sparsity collapse ——
λgpen = 0.1 30.80±0.54 28.63±0.52 19.30±0.20 20.40 20.89±0.29
λgpen = 0.01 74.46±0.41 73.90±0.39 59.69±0.36 19.03 19.52±0.15
λgpen = 0.001 89.38±0.12 89.31±0.17 87.42±0.40 18.72 19.15±0.33
λgpen = 0.0001 90.55±0.34 90.74±0.34 89.81±0.42 18.67 18.96±0.22

Constrained
Model-wise

ϵ = 20% 21.50±0.19 20.10±0.29 24.72±0.31 20.42 20.81±0.07
ϵ = 35% 35.46±0.01 34.82±0.11 44.46±0.76 19.29 19.88±0.16
ϵ = 50% 50.16±0.01 49.63±0.09 60.54±0.88 19.25 19.65±0.17
ϵ = 65% 65.08±0.04 64.64±0.14 72.20±0.60 18.86 19.22±0.25
ϵ = 80% 80.12±0.03 79.82±0.04 82.33±0.46 18.91 19.16±0.25

Penalized
Model-wise

λpen = 1 22.37±0.39 21.07±0.48 28.49±0.62 20.34 20.79±0.32
λpen = 0.1 71.90±0.73 71.66±0.71 74.22±0.43 18.37 18.83±0.47
λpen = 0.01 88.65±0.73 88.60±0.80 88.39±0.83 18.41 18.99±0.37
λpen = 0.001 90.46±0.23 90.53±0.45 90.06±0.62 18.75 19.22±0.16
λpen = 0.0001 90.70±0.33 90.83±0.35 90.03±0.32 19.02 19.42±0.10

a.11.4 TinyImageNet
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Figure A.12: Training sparse ResNet18 models on TinyImageNet. This figure is the same as
Fig. 4.1. We repeat it here for the reader’s convenience.
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Table A.14: Achieved density levels and performance for sparse ResNet18 models trained on
TinyImageNet for 120 epochs. Metrics aggregated over 3 runs.

Method Hyper-params L0-density (%) Params (%) MACs (%) Val. Error (%)
best at 200 epochs

Constrained
g ∈ [1 : 16]
Layer-wise

ϵg = 20% 22.99±0.53 13.40±0.54 11.75±0.45 46.12 47.09±0.15
ϵg = 35% 35.41±0.07 21.16±0.03 20.25±0.16 43.87 45.16±0.31
ϵg = 50% 50.40±0.04 34.22±0.28 32.73±0.49 42.52 43.80±0.44
ϵg = 65% 65.32±0.42 50.22±0.54 47.34±0.66 41.80 42.61±0.10
ϵg = 80% 79.68±0.88 68.78±1.70 65.98±1.53 40.55 41.17±0.61

Penalized
g ∈ [1 : 16]
Layer-wise

λgpen = 1 —— Failed due to sparsity collapse ——
λgpen = 0.1 35.90±0.57 18.98±0.57 10.77±0.90 46.34 48.70±0.73
λgpen = 0.01 78.77±0.84 65.59±1.94 50.66±1.77 41.36 42.15±0.27
λgpen = 0.001 86.87±0.38 77.14±1.29 67.45±3.88 40.75 41.23±0.58
λgpen = 0.0001 87.77±0.42 78.85±0.91 71.49±2.36 40.32 40.68±0.04

Constrained
Model-wise

ϵ = 20% 20.11±0.03 13.75±0.31 31.22±1.25 42.02 42.87±1.00
ϵ = 35% 35.66±0.12 21.25±0.70 33.88±1.25 41.28 42.99±0.81
ϵ = 50% 50.53±0.09 33.19±0.08 43.65±0.94 40.70 42.29±0.17
ϵ = 65% 65.46±0.19 49.34±0.55 53.92±0.97 41.23 41.86±0.54
ϵ = 80% 80.45±0.19 67.45±0.67 64.80±1.18 40.71 41.16±0.28

Penalized
Model-wise

λpen = 1 —— Failed due to sparsity collapse ——
λpen = 0.1 73.64±0.72 59.27±0.76 59.33±2.19 40.84 41.69±0.16
λpen = 0.01 83.80±0.08 72.41±0.67 66.64±1.26 40.33 41.29±0.50
λpen = 0.001 85.12±0.89 74.31±1.72 67.30±1.62 40.71 41.28±0.56
λpen = 0.0001 84.84±0.90 73.80±1.53 66.91±1.65 40.57 41.05±0.33

a.11.5 ImageNet
Here we provide further results for ResNet50 models on ImageNet, including experi-
ments with model-wise constraints and the fine-tuned performance of the magnitude
pruning method. We highlight that the controllability properties of our proposed con-
strained formulation extend to this large-scale setting (compare target density and L0-
density columns). The dense, pre-trained baseline, used as the starting point for mag-
nitude pruning, corresponds to the ResNet50_Weights.IMAGENET1K_V1 model made
publicly available by Pytorch [Pas+19].

As expected, model-wise constraints allow for a more flexible allocation of the param-
eter budget throughout the network, thus leading to a better validation error. However,
this flexibility can also result in models with larger memory and computational foot-
prints. For example, with ϵ = 70%, the model learned with model-wise constraints has
a very similar parameter count (64.41%vs 61.19%) but a significantly higherMAC count
(76.50% vs 58.59%).

The results on magnitude pruning confirm the importance of the fine-tuning stage
for this technique. The accuracy improves dramatically after a few epochs of retraining
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Table A.15: Sparse ResNet50 models on ImageNet. “Fine-tuning” for zero epochs means no fine-
tuning. This table is the same as Table 4.2. We repeat it here for the reader’s convenience.

Target
Method

L0-density Params MACs Best Val. Error (%)

Density (%) (%) (%) After fine-tuning for # epochs
0 1 10 20

− Pre-trained Baseline 100 [25.5M] [4.12 · 109] 23.90 ——————–

ϵ = 90%

Constrained
90.36 88.06 91.62 24.68 ——————–

Model-wise
Constrained

90.58 87.07 85.97 24.97 ——————–
Layer-wise

L1 - Mag. Prune − 85.94 84.99 38.74 25.38 24.69 24.68
Layer-wise

ϵ = 70%

Constrained
70.78 64.41 76.50 25.53 ——————–

Model-wise
Constrained

70.36 61.91 58.59 26.98 ——————–
Layer-wise

L1 - Mag. Prune − 62.15 59.85 97.78 29.04 26.80 26.14
Layer-wise

ϵ = 50%

Constrained 50.18 42.47 58.00 27.51 ——————–
Model-wise
Constrained 50.70 43.15 38.25 27.89 ——————–
Layer-wise

L1 - Mag. Prune − 43.47 39.76 99.75 36.21 29.98 29.16
Layer-wise

ϵ = 30%

Constrained 30.31 31.81 42.05 29.65 ——————–
Model-wise
Constrained 31.44 30.16 23.74 31.71 ——————–
Layer-wise

L1 - Mag. Prune − 29.86 24.80 99.89 56.11 36.90 34.74
Layer-wise

compared to the “just-pruned” model. Rather than a “pure” pruning technique, one can
think of magnitude pruning as a method that, given a pretrained model, provides an
initialization for a smaller model which needs to be trained (i.e. fine-tuned). At high
density levels (e.g. 70-90%) the performance of the constrained L0 formulation and fine-
tuned magnitude pruning methods are located within a similar range. However, for
harsher sparsity levels (30-50% density) the performance of models obtained using the
constrained approach is significantly better than for magnitude pruning, even after fine-
tuning.

a.12 unstructured sparsity

In this section we demonstrate that our constrained approach transfers successfully be-
tween the structured and unstructured sparsity regimes without major modifications.
We carry out experiments usingMLPand convolutionalmodels onMNIST, andResNet18
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models on TinyImageNet.

Our unstructured experiments consider one gate per model parameter. This means
that the number of gates in the unstructured setting ismuch larger than in the structured
one, since it scales with the total number of model parameters and not with the number
of units/output maps. The L0 density of a layer with unstructured sparsity corresponds
to the expected number of active gates within that layer.

We compare to a magnitude pruning baseline where a dense model is pre-trained,
pruned in an unstructured way and fine-tuned. Since magnitude pruning is typically
applied independently at each layer, we concentrate on experiments with layer-wise con-
straints.

a.12.1 Experimental setup

Throughout this section, the model architectures we use for experiments with unstruc-
tured sparsity match those of structured experiments detailed in Table A.2.

a.12.1.1 MNIST

Table A.16 presents the hyper-parameters used for training MLP and LeNet models on
MNIST with unstructured sparsity. We train using a batch size of 128 and do not apply
weight decay.

Table A.16: Configurations for MNIST experiments with unstructured sparsity.

Approach
Weights Gates Lagrange Multipliers

Optim. ηθ̃primal Optim. ηϕprimal Optim. ηdual Restarts

Constrained Adam 7 · 10−4 Adam 1 · 10−3 Grad. Ascent 10−3 Yes

Magnitude Pruning Adam 7 · 10−4 - - - - -

Models with L0 gates. All the layers in these models have unstructured gates (one
gate per weight entry and one gate per bias). The gate parameters are initialized using
ρinit = 0.05 (see Appx. A.1.2). We train these models for 200 epochs.

Magnitude pruning. For our magnitude pruning experiments we first trained a fully
densemodel for 200 epochs. We then apply unstructured pruningwith the pre-determined
target density, and retrain the resulting sparse model for another 200 epochs. We apply
magnitude pruning to each of the layers in these models. Our magnitude pruning im-
plementation keeps the biases fully dense.

a.12.1.2 TinyImageNet

Table A.17 presents the hyper-parameters used for learning sparse ResNet18 models on
TinyImageNet. We use SGD with a momentum coefficient of 0.9 for the weights. The
learning rate of the weights ηθ̃primal is multiplied by 0.1 at 30, 60 and 90 epochs. We use a
batch size of 100.
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Table A.17: Default configurations for TinyImageNet experiments with unstructured sparsity.

Approach
Weights Gates Lagrange Multipliers Target Weight

Optim. ηθ̃primal Optim. ηϕprimal Optim. Restarts ηdual density decay

Constrained SGDM 0.1 Adam 3 · 10−2 Yes

9 · 10−5 20%

5 · 10−4Gradient 2 · 10−4 10%

Ascent 7 · 10−4 5%

2 · 10−3 1%

Magnitude Pruning SGDM 1 · 10−4 - - - - - 5 · 10−4

Models with L0 gates. The model’s initial convolutional and final fully connected
layers are kept fully dense. The residual connection of each BasicBlock in the model
is kept fully dense, while all other convolutional layers use unstructured sparsity. This
results in 16 sparsifiable convolutional layers. The gate parameters are initialized using
ρinit = 0.05 (see Appx. A.1.2) and optimized with Adam. We train these models for 120
epochs.

Magnitude pruning. For our magnitude pruning experiments we first trained a fully
dense ResNet18 model for 120 epochs, using the weights learning rate schedule men-
tioned above. We then apply unstructured pruning with the pre-determined target den-
sity, and fine-tune the resulting sparse model for another 120 epochs using a fixed learn-
ing rate of 1 ·10−4. We applymagnitude pruning to the same layers that were sparsifiable
in models with L0 gates. Our magnitude pruning implementation keeps the biases fully
dense.

a.12.1.3 Gates optimizer

We originally tried the same optimization setup as with structured experiments (see
Appx. A.10.5) for our unstructured experiments on TinyImageNet. Note that in the un-
structured setting, there is a significantly larger number of gates whose parameters need
to be optimized. Moreover, the influence of each individual gate on the sparsity of a layer
is much smaller compared to the structured experiments. Thus the learning rates for the
gates and the dual variables required to be tuned for these new unstructured tasks.

It was difficult to find a value of the gates learning rate that allowed the gates to move
appropriately: (1) models trained with small learning rates would not achieve any spar-
sity (see Appx. A.1 for similar behavior in the structured sparsity regime); while (2) for
larger gates learning rates we observed no decrease in model density for a long portion
of training, followed by a sudden drop to the target density level. However, this sudden
sparsification of the network caused a significant accuracy degradation. This behavior is
consistent with the observations documented by Gale et al. [GEH19].

Wehypothesize that trainingmodelswithunstructured L0 gates is highly susceptible to
noise. In the unstructured case the information available for determining whether a gate
should be active is mediated by its single associated parameter. Since we use mini-batch
estimates of the model gradients, the training signal coming from this single parameter
can be very noisy. In contrast, the structured setting has lower variance since each gate
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aggregates information across a large group of parameters. Therefore, using an optimizer
that is robust to this training noise is desirable.

We performed experiments with Adam as the optimizer for the model gates and this
choice successfully delivered sparse models without breaking their predictive capacity.

Note that the experiments reported by Gale et al. [GEH19] did not use an adaptive
optimizer for the gates. Exploring whether an adaptive optimizer like Adam would be
sufficient to resolve the shortcomings of the L0 reparametrization framework of Louizos
et al. [LWK18] documented by Gale et al. [GEH19] is left as future work.

a.12.2 Training dynamics

In this section we explore the training dynamics of our proposed constrained formu-
lation in the unstructured sparsity setting. We train a ResNet18 model on TinyIma-
geNet with layer-wise constraints of 5% density. For other experimental settings see
Appx. A.12.1.

Fig. A.13 shows the overall model density, the validation error, the density for a spe-
cific layer, and the Lagrange multiplier associated with the constraint for this layer. The
behavior for the chosen layer is representative of that of other layers in the model. The
density at the model and layer levels decreases stably to the desired target. Note that
a high sparsity of 95% is achievable without causing irreparable damage to the model
accuracy.
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Figure A.13: Training dynamics for a ResNet18model on TinyImageNet. This unstructured spar-
sity experiment uses layer-wise constraints with a target density of 5%. Layer 3 cor-
responds to the first convolutional layer of the second BasicBlock of the first ”lay-
er/stage” of the ResNet18 model.

Overall, the training dynamics of our unstructured experiments are qualitatively equiv-
alent to those of the structured experiments presented in Fig. A.2. This demonstrates that
our constrained approach transfers successfully between structured and unstructured
experiments.
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a.12.3 Performance comparison

Tables A.18 and A.19 present the sparsity and performance statistics of MLP and LeNet
models trained on MNIST at different target densities. We also include a (100%) dense
model and layer-wise magnitude pruning experiments as baselines. For details on the
experimental settings see Appx. A.12.1.

MNIST. Our proposed constrained approach consistently outperforms magnitude
pruning even after fine tuning the magnitude pruning models for 200 epochs. Our ap-
proach reliably produces models with the desired density for experiments at 20%, 10%,
and 5% density. The 1% density setting is challenging for both methods.

The constrained approach achieves high accuracy, although it incurs in a small viola-
tion of the sparsity constraint. Note that we employ the same dual learning rate across all
densities. More extensive tuning of the dual learning rate can resolve this unfeasibility.

On the other hand, magnitude pruning experiments achieve the desired density at
1% (by design) but drastically fail in terms of performance. Note that the accuracy for
magnitude pruning does not improve to an acceptable level even after fine-tuning for
a large number of epochs. This behavior can be explained by the fact that our MNIST
models have some layers with very few parameters. For example, at a 1% sparsity, the
first convolutional layer of the model has only 5 active parameters.

The very low number of parameters make the high-sparsity pruned models difficult
to fine-tune. This observation is consistent with the poor gradient dynamics reported by
Evci et al. [Evc+22] when training highly sparse networks. We would like to highlight
that our proposed method applies sparsity to the same layers as magnitude pruning, yet
achieves high levels of unstructured sparsity per layer with minimal accuracy reduction.
This shows that very sparse models with high accuracy do exist, however they seem to
be out of reach when simply fine-tuning a magnitude-pruned model.

Table A.18: Performance of MLP models trained with unstructured sparsity on MNIST. Unstruc-
tured magnitude pruning is applied independently at each layer to retain the desired target
density. “Fine-tuning” for zero epochs means no fine-tuning. Metrics averaged across 3 runs.

Target Density
Method L0-density (%)

Best Val. Error (%)

g ∈ [1 : 3]
After fine-tuning for # epochs
0 50 100 200

− Dense Baseline 100.00 1.72 ————–

ϵg = 20% Constrained 20.00 1.45 ————–

Magnitude Pruning − 3.81 2.03 1.93 1.89

ϵg = 10% Constrained 10.02 1.51 ————–

Magnitude Pruning − 9.31 2.63 2.57 2.48

ϵg = 5% Constrained 5.05 1.64 ————–

Magnitude Pruning − 30.68 3.69 3.69 3.69

ϵg = 1% Constrained 2.62 1.92 ————–

Magnitude Pruning − 90.45 60.82 60.69 55.45
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Table A.19: Performance of LeNetmodels trained with unstructured sparsity onMNIST.Unstruc-
tured magnitude pruning is applied independently at each layer to retain the desired target
density. “Fine-tuning” for zero epochs means no fine-tuning. Metrics averaged across 3 runs.

Target Density
Method L0-density (%)

Best Val. Error (%)

g ∈ [1 : 4]
After fine-tuning for # epochs
0 50 100 200

− Dense Baseline 100.00 0.85 ————–

ϵg = 20% Constrained 19.99 0.73 ————–

Magnitude Pruning − 2.28 0.98 0.92 0.92

ϵg = 10% Constrained 10.00 0.78 ————–

Magnitude Pruning − 5.23 1.38 1.38 1.32

ϵg = 5% Constrained 5.01 0.89 ————–

Magnitude Pruning − 12.53 2.39 2.39 2.39

ϵg = 1% Constrained 1.55 1.26 ————–

Magnitude Pruning − 88.76 88.76 88.76 88.76

TinyImageNet. Table A.20 displays the result for TinyImageNet experiments at 1%,
5%, 10% and 20% unstructured sparsity. We observe similar patterns as in the MNIST
experiments: the constrained approach reliably achieves the desired sparsity targets and
preserves reasonable performance.

Table A.20: Performance of ResNet18 models trained with unstructured sparsity on TinyIma-
geNet. “Fine-tuning” for zero epochs means no fine-tuning.

Target Density
Method L0-density (%)

Best Val. Error (%)

g ∈ [1 : 16]
After fine-tuning for # epochs
0 40 80 120

− Dense Baseline 100.00 38.64 ————–

ϵg = 20% Constrained 20.26 42.06 ————–

Magnitude Pruning − 43.45 39.81 39.35 39.27

ϵg = 10% Constrained 10.57 42.54 ————–

Magnitude Pruning − 54.06 42.19 41.45 41.25

ϵg = 5% Constrained 5.20 43.98 ————–

Magnitude Pruning − 75.44 46.00 44.21 43.75

ϵg = 1% Constrained 1.87 47.24 ————–

Magnitude Pruning − 99.21 81.67 72.95 69.00

In this task magnitude pruning outperforms the constrained approach, except for the
case of 1% density. We hypothesize that the improvement of magnitude pruning at rela-
tively larger density targets (10% and 20%) may be due to the significantly larger size of
the ResNet18 model compared to those used for MNIST, and thus easier to fine-tune.

Finally, note that the performance of the constrained approach in the harsh 1% density
setting is significantly better (albeit with a small violation of the constraint target) than
that of magnitude pruning, even 120 epochs of fine-tuning for magnitude pruning.
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b.1 stochastic gates

Let Uj ∼ Unif(0, 1) and 0 < β < 1. A concrete random variable [MMT17; JGP17]
sj ∼ q(· | (ϕj , β)) can be obtained by transforming the uniform random variable as:

sj = Sigmoid
(
1

β
log
(
ϕj Uj
1− Uj

))
. (B.1)

Given hyper-parameters γ < 0 < 1 < ζ , the hard concrete distribution [LWK18]
corresponds to a stretching and clamping of a concrete random variable. The hard con-
crete distribution is a mixed distribution with point masses at 0 and 1, and a continuous
density over (0, 1).

z = clamp[0,1](s(ζ − γ) + γ)) (B.2)

Table B.1 specifies the values of the fixed parameters associated with the gates em-
ployed throughout this work, following Louizos et al. [LWK18].

Table B.1: Fixed parameters of the hard concrete distribution.

Parameter γ ζ β

Value -0.1 1.1 2/3

We use z for modeling the stochastic gates of L0onie models. The stochastic nature of
hard concrete variables entails amodel which is itself stochastic. For computing forwards
and BPP measurements, we replace each gate by its median ẑ(ϕ):

ẑ(ϕ) = min
(
1, max

(
0, Sigmoid

(
log(ϕ)
β

)
(ζ − γ) + γ

))
(B.3)

Gatemedians are a deterministic function of the trainable parameterϕ. Moreover, the
stretching and clamping enables the medians to attain the values 0 or 1, thus producing
a sparse network.

However, gate medians are poorly suited for setting up the BPP constraint as they
do not allow for change once a gate is “fully turned off or on”; once the median is zero,
the gradient with respect to ϕj is zero. Hence, we use expected BPP of the model as a
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surrogate for computing gradients. Note that this quantity is differentiable with respect
to ϕj .

Ez|ϕ

[
BPP(θ̃ � z)

]
=
∑
i

bits(θ̃i � zj) P[zi 6= 0] (B.4)

=
∑
i

bits(θ̃i) Sigmoid
(
log(ϕi)− β log

−γ
ζ

)
(B.5)

b.2 proxy-constraints

Let us recall the min-max Lagrangian optimization problem from Eq. (6.3)

θ̃∗,ϕ∗, λ∗co ≜ argmin
θ̃,ϕ

argmax
λco≥0

LI(θ̃� ẑ(ϕ))+λco

(
BPP(cast(θ̃ � ẑ(ϕ))− τBPP

)
.

Applying simultaneous gradient descent-ascent on this problem corresponds to the
update scheme:

[θ̃t+1,ϕt+1] ≜ [θ̃t,ϕt]− ηprimal∇[θ̃,ϕ]

[
LI(θ̃ � ẑ(ϕ)) + λcoBPP(cast(θ̃ � ẑ(ϕ))

]
(B.6a)

λt+1
co ≜ max

(
0, λtco + ηdual

(
BPP(cast(θ̃ � ẑ(ϕ))− τBPP

))
(B.6b)

The gradient update for λco matches the value of constraint violation. Whenever the
constraint is not satisfied, the Lagrangemultiplier increases. We employ the dual restarts
technique of Gallego-Posada et al. [Gal+22] when the constraint is satisfied.

Note that primal update involves computing the gradient of the BPP(cast(θ̃� ẑ(ϕ))
with respect to the parameters θ̃ and ϕ. As mentioned in Appx. B.1, this quantity is not
differentiable when the gate medians attain the values 0 or 1. To overcome this issue
we employ the expected BPP as a surrogate or proxy-constraint [Cot+19b, §4.2] when
computing the gradient for the primal update. The original (non-proxy) constraint is
used for updating the value of the Lagrange multiplier.

b.3 experimental details

Our implementation is developed in Python 3.8, using Pytorch 1.11 [Pas+19] and the
Cooper constrained optimization library [Gal+24]. We provide scripts to replicate our
experiments at: https://github.com/juan43ramirez/l0onie.

b.3.1 Codec baselines

Thebaseline results for the JPEG [Wal92] standard were obtained using the CompressAI
library [Bég+20].
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b.3.2 Model architectures

We considered the same setup as Dupont et al. [Dup+21]: MLPs with 2 input dimen-
sions corresponding to the position of input pixels normalized to lie in [−1, 1] and 3 out-
puts corresponding to RGB values normalized to lie in [0, 1]. These models are trained
at single (float32) precision.

All our models use Sine activations at every layer except for the output layer. These
are setup with a fixed angular frequency of ω0 = 30.

When replicating the experiments of Dupont et al. [Dup+21], we consider specific
architectures so as to yield bits-per-pixel of 0.07, 0.15, 0.3 and 0.6 at half (float16) pre-
cision. Table B.2 contains the hidden layers associated with each of these architectures.

Table B.2: Architectures used throughout this paper, along with their respective bits-per-pixel
when used to compress an image of 768 × 512 pixels. BPPs are calculated for each
architecture at single (float32) and half (float16) precision.

Hidden layers Width of Layers BPP @ float32 BPP @ float16

5 20 0.15 0.07
5 30 0.3 0.15
10 28 0.6 0.3
10 40 1.2 0.6
10 40 1.62 0.81

For L0onie and magnitude pruning experiments, we consider unstructured sparsity,
where each parameter can be pruned individually. We also consider target BPPs of com-
pressed models at the same levels of 0.07, 0.15, 0.3 and 0.6 used to evaluate the COIN
approach. Furthermore, the initial (dense) architectures which are sparsified by L0onie
and magnitude pruning to meet these target BPPs are also based on the architectures
presented in Table B.2. We consider the next larger architecture from the one whose
BPP matches the one targeted. This is illustrated in Table B.3.

Table B.3: Initial architectures considered when applying L0onie andmagnitude pruning tomeet
various target BPPs. Note that the initial architecture has a larger BPP than the desired
target.

Target BPP (@ float16) Initial Architecture
BPP (@ float16) Hidden Layers Width of Layers

0.07 0.15 5 30
0.15 0.3 10 28
0.3 0.6 10 40
0.6 0.81 13 40
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b.3.3 Magnitude pruning

Allmagnitude pruning experiments follow the procedure presented in this section. First,
we train a COINmodel at a certain (larger) BPP.This serves as a baseline which can then
be pruned to achieve a lower BPP.The selection of the initial architecture depends on the
provided target BPP. The details about this choice are presented in Table B.3.

Thereafter, we loop over the layers of the baseline model, sorting their individual pa-
rameters based on magnitude. A suitable proportion of the parameters with the smaller
magnitude is set to 0. We perform the sorting and pruning separately for weightmatrices
and biases.

We tried two variants for maginitude pruning: 1© applying the same level of pruning
for all the layers, or 2© keeping the first and last layers fully dense. This last technique is
commonly used in conjunction with magnitude pruning, and is particularly important
in the setting of this work since the number of input dimensions is very low.

The results ofmethod 1©were significantly and consistentlyworse than those ofmethod
2©. The results reported in this paper correspond to method 2©.

Immediately after pruning we evaluate the performance of the model in terms of
PSNR. We identified a very significant degradation in performance and thus perform
fine-tuning on the remaining parameters using the same number of iterations as the
original training for the COIN baseline. The optimization hyper-parameters employed
during this stage are presented in B.3.5.

b.3.4 Parameter initialization

We use the same method proposed by [LWK18] for initializing the learnable parame-
ters ϕ. We leverage this scheme to ensure that the expected value of stochastic gates is
centered around 0.5 at initialization.

The network’s weights and biases are initialized in accordance to their use of sine ac-
tivation functions, following the procedure described in [Sit+20]. This involves setting
thembased on a uniformdistribution in [−a, a]. Asmentioned previously, for L0onie ex-
periments, the gate distributions are initialized to be symmetric around 0.5, thus shrink-
ing the effective value of parameters to lie in [−a/2, a/2]. We counter this by adjusting
the initialization of weights and biases of L0onie models to lie in [−2a, 2a], thus having
effective values of parameters in the desired range.

b.3.5 Optimization hyper-parameters

This section presents the optimization hyper-parameters used throughout our work. Ta-
ble B.4 indicates those considered when training COIN models and for the fine-tuning
of models after magnitude pruning. These are the same across different images and ar-
chitectures. Both cases employ the same configuration for the optimizer: Adam [adam]
with (β1, β2) = (0.9, 0.999), as is default in Pytorch.
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Table B.4: Optimization hyper-parameters for training COIN baselines and fine-tuning models
which have been magnitude-pruned.

Approach Train Precision Decode Precision Steps Optim. ηθ̃primal

COIN
float32 float16 50.000 Adam 2 · 10−4

MP fine-tuning

Note that the constraint functions considered for L0onies involve expectations but
can be computed in closed-form based on the parameters of the gates, as presented in
Appx. B.1. Therefore, the computation of constraint violations is deterministic. We em-
ploy gradient ascent on the Lagrange multipliers. We initialize all Lagrange multipliers
at zero. Details on the chosen dual learning rate, along with the use of dual restarts for
L0onie experiments are presented in Table B.5.

We use the same configurations across all Kodak images for a given target BPP. Since
our goal is to “overfit” the model to the image, we do not use weight decay or other
regularization techniques.

Table B.5: Optimization hyper-parameters for training L0onie models.

Target Initial Weights Gates Lagrange Multipliers
BPP Architecture Optim. ηθ̃primal Optim. ηϕprimal Optim. ηdual Restarts

0.07 2 - 5×[30] - 3

Adam 10−3 Adam 7 · 10−4 Grad. Ascent

7 · 10−3

Yes0.15 2 - 10×[28] - 3 3 · 10−3

0.3 2 - 10×[40] - 3 1 · 10−3

0.6 2 - 13×[40] - 3 8 · 10−4

b.4 additional results

We evaluate the performance of our approach when compressing each image in the Ko-
dak dataset at 0.07, 0.15, 0.3 and 0.6 BPPs. In addition, we did the same for COIN and
magnitude pruning plus fine-tuning. Fig. B.1 presents the best PSNRs we obtained.

Magnitude pruning always underperforms as opposed to L0onie and COIN. This gap
is more pronounced at 0.07 BPP, but is consistent across images. Moreover, the perfor-
mance of L0onie is generally competitive to that of COIN, whilst being slightly superior
in the 0.15 and 0.3 BPP cases.

b.5 qualitative results

We provide qualitative comparisons for some images of the Kodak dataset of different
levels of compression difficulty, according to the histograms in Fig. B.1. The image grids
in Figs. B.2 to B.5 below are generated from reconstructions at various BPP budgets for
L0onie, COIN, magnitude pruning and JPEG. The experimental configuration for these
experiments is provided in Appx. B.3.

149



Constrained Optimization for Machine Learning

0.
07

BP
P

12 2 3 16 15 23 4 20 10 9 17 22 11 6 7 21 19 18 14 24 1 13 5 8
Image

15

20

25

M
ax

 P
SN

R
 [d

B
]

L0-onie COIN MP
0.
15

BP
P

3 12 2 23 20 15 4 16 9 10 17 22 7 11 19 21 6 18 14 24 1 5 13 8
Image

15

20

25

30

M
ax

 P
SN

R
 [d

B
]

L0-onie COIN MP

0.
3
BP

P

23 3 12 2 20 15 9 4 10 16 17 7 22 11 19 21 6 18 14 24 1 5 13 8
Image

15

20

25

30

M
ax

 P
SN

R
 [d

B
]

L0-onie COIN MP

0.
6
BP

P

23 3 12 20 9 2 15 10 4 7 17 16 22 19 11 21 6 14 18 24 1 5 13 8
Image

20

30

M
ax

 P
SN

R
 [d

B
]

L0-onie COIN MP

Figure B.1: Histogram of best PSNR for all images in the Kodak dataset for L0onie, COIN and
magnitude pruning at different compression rates. Images sorted in decreasing order
of maximum PSNR for L0onie at the end of trainig.

To reduce the file size of this manuscript, we only include compressed versions of the
reconstruction grids. We invite the interested reader to consult the online version of this
work* for the full, uncompressed set of images, including the original images and the* Available at

https://arxiv.org/
abs/2207.04144

reconstructions at different BPPs.
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Figure B.2: Reconstruction of Kodak image 23 for all methods at different target BPP.

Figure B.3: Reconstruction of Kodak image 15 for all methods at different target BPP.
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Figure B.4: Reconstruction of Kodak image 8 for all methods at different target BPP.

Figure B.5: Reconstruction of Kodak image 2 for all methods at different target BPP.
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c.1 constrained and min-max optimization

Lagrangian-based constrained optimizationhas gainedpopularity inmachine/deep learn-
ing owing to the fine-grained control it provides over specific properties ofmodels [Cot+19b;
SAA20; ENR22; Gal+22; HCR23]. In the context of our work, attaining a desired dispar-
ity level can be done directly by imposing the excess accuracy gap constraints presented
in Eq. (8.6). In contrast, achieving bounded disparity by augmenting the training ob-
jective with additive penalties is challenging as it requires iteratively tuning a penalty
coefficient per group [Gal+22].

The Lagrangian-based approach involves solving a non-convex-concave min-max op-
timization problem. In general, as long as the constraints are differentiable, themin-max
problem can be optimized with gradient-based updates. Fortunately, [Cot+19b] show
how even when the constraints are non-differentiable (but differentiable surrogates are
available) proxy constraints can be used to find a semi-coarse correlated equilibrium of
the min-max problem.

The solution to the min-max optimization problem (i.e. a saddle point) associated
with the Lagrangian corresponds to a global constrained minimizer of the original con-
strained problem [Ber16]. However, a saddle point of the Lagrangian may not exist for
non-convex problems [Cot+19b; Neu28].

In the context of machine learning, the success of adversarial formulations such as
GANs [Goo+14] and adversarial training [Mad+18] has sparked interest in min-max
optimization. [LJJ20] prove local linear convergence for simultaneous gradient descent-
ascent in the non-convex-concave setting. Moreover, [Zha+22] prove local linear con-
vergence of Alt-GDA in the strongly-convex-concave setting. They observe that the iter-
ation complexity of Alt-GDA is optimal [MOP20a], thus matching that of extragradient
[Kor76; Gid+19b]. These observations motivate our choice of Alt-GDA for optimizing
Eq. (8.6).

Recent work has studied the statistical properties of constrained optimization prob-
lems [CR20; Cha+22]. This line of work has formulated PAC generalization bounds on
feasibility and optimality, arguing that learning with constraints is not a more difficult
problem than learning without constraints [CR20].

c.2 alternative constrained formulations

This section elaborates on alternative constrained formulations for mitigating the dis-
parate impact of pruning. Appx.C.2.1 presents the equalized loss formulation of [Tra+22],

153



Constrained Optimization for Machine Learning

Appx. C.2.2 describes a problem that constrains excess loss gaps of the sparse model, and
Appx. C.2.3 formulates problems that (approximately) equalize the per-group excess ac-
curacy gaps.

c.2.1 Equalized Loss

Equation (C.1) presents the equalized loss formulation for mitigating disparate impact
[Tra+22]. This formulation matches the loss of each group with the overall loss.

argmin
θ∈Θ

L(θ|D), s.t. L(θ|Dg)− L(θ|D) = 0, ∀g ∈ G (C.1)

[Tra+22] provide theoretical arguments to link disparate impact (in terms of group-
level excess loss gaps) to the loss on each group. This justifies their choice of constraints.

Our implementation of this approach follows a pipeline akin to Algo. 2: we optimize it
with alternating gradient descent-ascent and use group replay buffers to reduce variance
in the estimation of the constraints for updating the dual variables. The storage cost
associated with the buffer in this setting is higher than that for CEAG, since per-sample
losses (floating point numbers) are stored instead of accuracies (booleans).

As shown in Appx. C.3.1, we notice smoother training dynamics for the multipliers
when using the replay buffers. Table 8.3 shows how the equalized loss formulation ben-
efits from them in terms of mitigating the disparate impact of pruning.

c.2.2 Constrained Excess Loss Gaps

An alternative to both CEAG and Eq. (C.1) is to constrain loss gaps between the dense
and sparse models. This yields the following constrained excess loss gaps problem:

argmin
θs∈Θ

L(θs|D) (C.2)

s.t. ψ̃g = −
(
L(θd|Dg)− L(θs|Dg)

)
+
(
L(θd|D)− L(θs|D)

)
≤ ϵ, ∀g ∈ G

This formulation addresses the disparate impact of pruning, although in terms of loss
gaps instead of accuracy gaps. Selecting a tolerance ϵ for this formulation can be chal-
lenging as it requires specifying acceptable levels of excess loss gaps, which can vary
significantly across tasks.

c.2.3 Constrained ΨPW

Constrained disparate impact. A natural formulation to consider involves constrain-
ing the disparate impact, as defined in Eq. (8.5a). The constrained optimization can be
formulated as:

argmin
θs∈Θ

L(θs|D), s.t. ΨPW = max
g∈G

∆g (θs,θd)−min
g∈G

∆g (θs,θd) ≤ ϵ. (C.3)
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The constraint onΨPW considers the difference between the most and least degraded
groups. Therefore, when calculating the gradient of the Lagrangian, only the contribu-
tion from said extreme groups appears. This “lack of signal” may make optimization
dynamics challenging, illustrated in Fig. C.1. The formulation successfully mitigates
the disparate impact problem in the context of race prediction for the UTKFace dataset,
which features 5 sub-groups. However, when confronted with the CIFAR-100 dataset,
encompassing 100 sub-groups, gradient-based approaches to solve Eq. (C.3) are unable
to identify a feasible solution. For both of these scenarios, we observed that the value
of the (single) Lagrange multiplier grew continuously, without settling, confirming the
previous intuition regarding poor optimization dynamics.
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Figure C.1: Evolution of disparate impact of pruning (ΨPW) during training under Eq. (C.3). Left:
UTKFace dataset at 92.5% sparsity. Right: CIFAR-100 dataset at 95% sparsity. The
horizontal dashed lines indicate the tolerance (ϵ) of 5% and 10%, respectively.

A potential approach to alleviate this problem could be to introduce constraints on
the pair-wise accuracy gaps:

argmin
θs∈Θ

L(θs|D), s.t.−ϵ ≤ ∆g (θs,θd)−∆g′ (θs,θd) ≤ ϵ, ∀g, g′ ∈ G. (C.4)

However, this alternative formulation requires quadratically many constraints in the
number of protected groups and does not scale to situations where the number of pro-
tected groups is large.

Equalized excess accuracy gaps. Equalizing the per-group excess accuracy gaps to
zero gives rise to the following formulation:

argmin
θs∈Θ

L(θs|D), s.t. ψg = ∆g (θs,θd)−∆(θs,θd) = 0, ∀g ∈ G. (C.5)

Compared to CEAG, this formulation (i) does not have an additional tolerance hyper-
parameter ϵ, and (ii) prevents groups from having negative EAGs.

However, Eq. (C.5) can be challenging to solve because it may not have any feasible
solutions; equalizing accuracy values may not be possible due to their discrete nature.
Moreover, the lack of a tolerance hyper-parameter hurts flexibility as disparity require-
ments cannot be incorporated into the problem formulation.
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Approximately equal excess accuracy gaps. A possible way to circumvent the limi-
tations of Eq. (C.5) is to formulate the constrained problem:

argmin
θs∈Θ

L(θs|D), s.t. |ψg| = |∆g (θs,θd)−∆(θs,θd) | ≤ ϵ, ∀g ∈ G. (C.6)

Feasible solutions of Eq. (C.6) achieveΨPW ≤ 2ϵ by imposing both an upper and a lower
bound on per-group EAGs. Compared to CEAG, this formulation prevents groups from
experiencing a large improvement in performance compared to the global accuracy gap.
Compared to Eq. (C.5), it allows for some tolerance at satisfying the equality. Naturally,
for reasonable values of ϵ, Eq. (C.6) has a non-empty set of feasible solutions.

However, since the feasible set of Eq. (C.6) is small (as prescribed by ϵ), solving it is
challenging, especially in the context of stochastic optimization. Mini-batch estimates
of the constraints have a high chance of being infeasible due to the small feasible region
and noise in the estimation. This leads to updates on the dual variables that are positive
most of the time. In turn, this yields dual variables that perpetually increase and never
stabilize.

Two-sided inequality. Alternatively, a two-sided inequality constrained optimization
problem is:

argmin
θs∈Θ

L(θs|D) (C.7)

s.t. ψg = ∆g (θs,θd)−∆(θs,θd) ≤ ϵ, ∀g ∈ G (C.8)
−ψg = − (∆g (θs,θd)−∆(θs,θd)) ≤ ϵ, ∀g ∈ G. (C.9)

This problem allows for individual dual variables to behave akin to those of CEAG. How-
ever, note how the two constraints for each EAG introduce conflicting terms to the gra-
dient of θs: the model would aim to increase or decrease ψg depending on the current
values of the dual variables.

Discussion. We focus on Eq. (8.6), and argue that constraining negative EAGs is not
crucial for mitigating disparity. A side effect of this choice is allowing for sparse models
whose group AGs are arbitrarily below the overall AG. In practice, this may lead to some
groups improving their performance while the overall model accuracy decreases. We
argue that this behavior is not problematic since it is only likely to manifest for under-
represented groups: groups with few samples can deviate in performance from other
groups, without significantly influencing overall accuracy.

Eqs. (C.5) to (C.7) consider bounds on negative EAGs, but carrying out experiments
on them is outside the scope of our work.
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c.3 replay buffers

Algorithm 5 Update Buffer
Input: bufg : Buffer for group g, ŷ: A batch of model predictions, y: The batch of true

targets, idxg : The sub-group indices of the batch.
1: function UpdateBuffer(bufg, ŷ, y, idxg)
2: SampleAcc← (ŷ == y)[idxg]
3: bufg ← Push (bufg, SampleAcc) {Drops old elements to respect capacity}
4: return bufg
5: end function

Algos. 5 and 6 contain functions for updating and querying the replay buffers, respec-
tively. These are called by Algo. 2. Note that we wait until a buffer has been filled before
considering its contents for computing the ψg terms. Before a buffer is filled, its corre-
sponding ψg is 0.

For all groups, we consider the same buffer memory size k. Thus, the effective dataset
used when computing EAGs of the sparse model is balanced across groups: it has k sam-
ples per group. However, when the original dataset is not balanced, this design implies
that over-represented classes refresh their buffers faster as opposed to under-represented
classes.

Algorithm 6 Query Buffers
Input: bufg, ∀g ∈ G: All replay buffers, k:Memory size for the replay buffers,Agdense: Ac-

curacy of the dense model on each group g,Adense: Aggregate accuracy of the dense
model.

1: function QueryBuffers
(
{bufg}Gg=1, k, {A

g
dense}

G
g=1, Adense

)
2: I ← {} {Indices of full buffers}
3: for g ∈ G do
4: if Len(bufg) then
5: I ← I ∪ {g}
6: SampleAccg ← Query (bufg, k) {Query all elements of each buffer}
7: Agsparse ← Average

(
SampleAccg

)
8: end if
9: end for

10: Asparse ← Average
(
{Agsparse}g∈I

)
{Compute aggregate from full buffers}

11: for g ∈ G do
12: if g ∈ I then
13: ψg ← (Agsparse −Agdense)− (Asparse −Adense)
14: else
15: ψg ← 0 {Ignore non-full buffers in ψg}
16: end if
17: end for
18: return {ψg}Gg=1

19: end function
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c.3.1 Training Dynamics with Replay Buffers

In Fig. C.2, we present the behavior of a select multiplier in a CIFAR-100 experiment
with 90% sparsity. We depict two training stages: on the left, the multiplier consistently
maintains a non-zero value, while on the right, it is frequently around zero. Multipliers
are initialized at zero, and are expected to increase during the first stages of trainingwhen
constraints may not be satisfied. Moreover, they are expected to eventually stabilize at a
value (possibly zero) if their corresponding constraint is inactive at the solution.

On the left plot, we observe a smooth curve for the dual variable corresponding to
the run with replay buffers. In contrast, the dual variable for the run without buffers
is more noisy. On the right plot, the multiplier associated with the run without buffers
becomes active more frequently than the multiplier of the run with buffers. Given the
smallmagnitude of thesemultipliers (up to 0.003), the constraintmay actually be feasible
in this region and so the desirable behavior is to keep multipliers at 0.
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Figure C.2: Effects of replay buffers on the multiplier dynamics on CIFAR-100 under 90% spar-
sity. As expected, when using replay buffers, themultiplier exhibits notably smoother
dynamics.

c.3.2 Replay Buffer Size Ablation

Table C.1: Effects of the memory size of replay buffers on a CIFAR-100 task at 95% sparsity. Not
using a buffer yields poor results in terms of maxg ψg . For experiments with buffers,
different choices of memory sizes yield comparable results. We consider a tolerance
of ϵ = 5%.

Buffer Size (k) Train Test
Accuracy maxg ψg Accuracy maxg ψg

No Buffer 95.8± 0.15 5.8± 0.53 62.5± 0.41 17.1± 3.59
20 95.7± 0.10 5.4± 0.69 62.6± 0.30 16.0± 2.82
40 95.6± 0.12 5.7± 0.49 62.7± 0.28 14.8± 1.52
60 95.6± 0.16 5.5± 0.63 62.7± 0.26 14.5± 1.92
80 95.6± 0.17 5.5± 0.42 62.8± 0.44 16.4± 4.59

Table C.1 showcases the effect of the choice of buffer size in terms of accuracy and
disparate impact. We observe that having a buffer is beneficial in terms of the train and
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test maxg ψg , while yielding models with similar accuracy to those obtained without
replay buffers.

We observe that changing the buffer size has a small impact in terms of accuracy. In
terms of maxg ψg , the smallest (20) and largest (80) choices of buffer size result in more
significant overfitting compared to 40 and 60. Moreover, the maximum EAG in test
shows high variance in these cases. Table C.1 motivates our choice of k = 40 for most
experiments.

c.4 experimental details

Our implementations are in PyTorch 1.13.0 [Pas+19], with the Cooper library for La-
grangian constrained optimization [Gal+24].

Pipeline. As illustrated in Fig. 8.1, our pipeline consists of 3 stages: (i) obtaining a
dense pre-trainedmodel, (ii) pruning saidmodel using gradual magnitude pruning, and
(iii) fine-tuning the sparsemodel using either empirical riskminimization, the equalized
loss formulation of [Tra+22], or our approach.

Dense models. Except for tasks involving the UTKFace dataset, we use publicly ac-
cessible pre-trained dense models. Appx. C.4.4 provides references to the pre-trained
models we use throughout this work.

Pruning. We perform unstructured, layer-wise, gradual magnitude pruning [ZG17]
with a cubic sparsity schedule (see Appx. C.4.5). We sparsify the weights of the model,
but not the biases. We also do not sparsify the input and output layers of the model, as
recommended by [GEH19]. See more details in Appx. C.4.3.

Tolerance level ϵ. We choose the tolerance level for each experiment by running NFT,
measuring its corresponding maxg ψg and choosing a value of ϵ below this level. This
protocol is ran independently for every task and every sparsity level. Finally, note that
since EL imposes an equality constraint, there is no tolerance hyper-parameter to be
chosen.

c.4.1 Tasks and protected attributes

We carry out experiments on the UTKFace [ZSQ17], FairFace [KJ21], and CIFAR-100
[Kri09] datasets; these respectively employMobileNet-V2 [San+18], ResNet-34 [He+16],
and CifarResNet-56 models [Che21], using different sparsity levels. These details are
summarized in Table C.2.

We highlight the data transformations and the batch size we employ for each dataset
in Table C.3.
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Table C.2: Tasks considered throughout this work.

Dataset Model Predicted Group Sparsity
Attribute Attribute

UTKFace MobileNet-V2
Race Race 85, 90, 92.5
Gender Race 85, 90, 92.5
Race Race ∩ Gender 85, 90, 92.5

FairFace ResNet-34
Race Race 99
Gender Race 99
Race Race ∩ Gender 99

CIFAR-100 CifarResNet-56 Class Class 90, 92.5, 95

Table C.3: Transformations and batch sizes considered for each dataset.

Dataset Transformations Batch Size
Train Test

UTKFace RandomHorizontalFlip(0.5) – 128

FairFace Resize(224,224)
Resize(224,224) 256

RandomHorizontalFlip(0.5)

CIFAR – – 128

c.4.2 Mitigation schemes

This section describes the approaches considered throughout this work for fine-tuning
the sparse model, with or without a scheme to mitigate the disparate impact of pruning.
We fine-tune sparse models on UTKFace and CIFAR for 45 epochs, and for 32 epochs
on FairFace.

Naive Fine Tuning (NFT). The sparse model is fine-tuned on the training set using
ERM.

Naive Fine Tuning with Early Stopping (NFT+ES). Obtained by selecting the best it-
erate of NFT in terms of test accuracy. We analyze this approach since early stopping is a
popular technique in deep learning practice and, as evidenced by our experiments, often
results in higher disparity (compared to the last iterate in NFT).

EL. Our implementation of the equalized loss method proposed by [Tra+22]. More
details of this formulation can be found in Appx. C.2.1.

EL+RB. Enhanced version of EL employing replay buffers (§8.4.2) for updating the dual
variables. The replay buffers store the per-sample losses observed at the mini-batch level
across groups.

CEAG. Our constrained excess accuracy gap approach (see §8.4.3), which uses replay
buffers by default.

160



C Appendix to the Third Contribution

c.4.3 Model Architectures

We employ MobileNet-V2 [San+18], ResNet-34, and CifarResNet-56 models [He+16].
ResNet-34models are composed of bottleneck residual blocks [He+16], whileCifarResNet-
56 models use basic residual blocks [Che21].

Following [Evc+20], across all models, we do not sparsify the biases due to their low
footprint towards the total number of parameters. We also do not sparsify the first and
last layers of the model as recommended by [GEH19].

Table C.4 specifies the number of parameters of all considered architectures. We also
provide the number of parameters remaining post-pruning across the considered spar-
sities for the reader’s convenience.

Table C.4: Statistics on the total number of parameters and active parameters at different sparsity
levels for our employed architectures. †Sparsifiable parameters indicate the number of pa-
rameters that may be removed during pruning (thus, excluding non-prunable parameters such
as biases). ‡Parameter counts reported for MobileNet-V2 and ResNet-34 models are for race
prediction tasks on UTKFace and FairFace, respectively.

Architecture Total Sparsifiable Active parameters at sparsity:

Params Params† 85% 90% 92.5% 95% 99%

MobileNet–V2‡ 2,230,277 2,222,944 366,946 255,250 198,709 – –
ResNet-34‡ 21,288,263 21,275,136 – – – – 241,751
CifarResNet-56 861,620 854,656 – 96,179 74,889 53,621 –

c.4.4 Pre-Trained Models

Reusing and fine-tuning of pre-trained deep learning models is a common practice. For
example, a typical application pipeline might involve (i) obtaining a pre-trained model,
(ii) fine-tuning it on an application-specific task, and (iii) pruning it before deployment.

Therefore, we concentrate on studying the behavior of mitigation techniques when
applied to openly available pre-trained models.

• ResNet-34 models for FairFace use the weights provided by [KJ21].

• CifarResNet-56 models for CIFAR-100 use the weights provided by [Che21].

• Wewere unable to findpublicly available pre-trainedMobileNet-V2models for the
UTKFace dataset. Thus, we train these from scratch (see details below). As part of
our reproducibility efforts, we are making our pre-trained UTKFace MobileNet-V2
models openly available.

For training UTKFace models, we use SGD with an initial learning rate of 0.01, de-
cayed by a factor of 0.1 at training milestones of 60%, 80%, and 90% of total training
epochs. We use a momentum coefficient of 0.9, and train for a total of 50 epochs. These
hyper-parameters are used both for race and gender prediction tasks.
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The group-wise performance for all the dense models is reported in Tables C.14, C.15,
C.17, C.18, C.20, C.21, C.23, C.24, C.26, C.27, C.29 and C.30.

c.4.5 Gradual Magnitude Pruning

As mentioned in §8.5.1, our experiments perform Gradual Magnitude Pruning (GMP),
where a fraction of the smallestweights (inmagnitude) is prunedon every epoch. [ZG17]
consider the following cubic schedule prescribing the proportion of parameters to prune
at every epoch:

st = sf + (si − sf )
(
1− t− t0

(Tend − t0)∆t

)3

(C.10)

for t ∈ {t0, t0 +∆t, ..., t0 + (Tend − t0)∆t}, where t0 is the initial training step, ∆t is
the pruning frequency (in epochs), Tend is final epoch of pruning, and si and sf denote
the initial and final sparsities, respectively.

Our experiments carry out GMP since epoch t0 = 0, throughout Tend = 15−1 = 14
epochs, and perform pruning once every epoch (∆t = 1).

c.4.6 Primal optimization hyper-parameters

We make use of SGD with momentum as the primal optimizer for all of our experi-
ments. In our initial ablation experiments on the choice of primal optimizer, we found
that employing SGD with momentum outperformed or matched the performance of
Adam [KB15].

For UTKFace and CIFAR-100 datasets, we employ a primal step size of 1 · 10−2 along
with a momentum of 0.9 (Polyak), and apply weight decay at the rate of 1 · 10−4.

For FairFace, we employ Nesterov momentum with a step-size of 1 · 10−3 and apply a
weight decay of 1 · 10−2. Specifically, for race prediction tasks, we utilize a momentum
of 0.95, while for gender prediction tasks, a momentum of 0.99 is employed.

Additionally, we use PyTorch’s MultiStepLR as the learning rate scheduler, with de-
cay γ = 0.1 across all experiments. For UTKFace and CIFAR-100, we set scheduler
milestones at 60%, 80% and 90% of the total training epochs (including the execution of
GMP). For instance, for a task that has 60 epochs where it employs GMP on 15 epochs,
the abovemilestones would activate at epoch 36, epoch 48 and epoch 54. For race predic-
tion on FairFace we use a single milestone at 90%, while gender prediction on FairFace
uses a constant learning rate of 1 · 10−2.

c.4.7 Dual optimization hyper-parameters

We employ stochastic gradient ascent on the dual parameters (corresponding to the La-
grange multipliers) in all experiments. The choices of dual learning rate are presented in
Tables C.5 to C.10.
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We fix k = 40 as the memory size for the replay buffer. Preliminary ablations on the
choice of k ∈ [20, 80] showed low sensitivity to the specific value of this hyper-parameter
(See Appx. C.3.2).

Note that the order of magnitude for the dual step-size choices is relatively consistent
across datasets, tasks, sparsity levels and disparity tolerances. This highlights the ease of
tuning exhibited by this hyper-parameter.

c.4.7.1 UTKFace

Table C.5: Tolerance and dual step-size for CEAG on UTKFace tasks.

Target Attribute Group Attribute Sparsity Dual Step-Size (ηλ) Tolerance ϵ (%)

Gender Race
85 2 · 10−3 0.5

90 1 · 10−4 0.5

92.5 3 · 10−3 0.5

Race Race
85 1 · 10−4 0.25

90 2 · 10−3 1

92.5 2 · 10−3 1

Race Race ∩ Gender
85 1 · 10−5 0.5

90 1 · 10−3 3

92.5 1 · 10−3 3

Table C.6: Dual step-size for EL+RB on UTKFace tasks.

Target Attribute Group Attribute Sparsity Dual Step-Size (ηλ)

Gender Race
85 1 · 10−4

90 1 · 10−5

92.5 1 · 10−5

Race Race
85 1 · 10−5

90 1 · 10−5

92.5 1 · 10−5

Race Race ∩ Gender
85 1 · 10−5

90 1 · 10−5

92.5 1 · 10−5
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c.4.7.2 FairFace

Table C.7: Tolerance and dual step-size for CEAG on FairFace tasks at 99% sparsity.

Target Attribute Group Attribute Dual Step-Size (ηλ) Tolerance ϵ (%)

Gender Race 1 · 10−5 1

Race Race 1 · 10−4 2

Race Race ∩ Gender 1 · 10−5 0.25

Table C.8: Dual step-size for EL+RB on FairFace tasks.

Target Attribute Group Attribute Dual Step-Size (ηλ)

Gender Race 1 · 10−5

Race Race 1 · 10−5

Race Race ∩ Gender 1 · 10−5

c.4.7.3 CIFAR

Table C.9: Tolerance and dual step-size for CEAG on CIFAR tasks.

Target Attribute Group Attribute Sparsity Dual Step-Size (ηλ) Tolerance ϵ (%)

Class Class
90 2 · 10−3 1

92.5 2 · 10−3 2

95 1 · 10−3 5

Table C.10: Dual step-size for EL+RB on CIFAR tasks.

Target Attribute Group Attribute Sparsity Dual Step-Size (ηλ)

Class Class
90 1 · 10−5

92.5 1 · 10−5

95 1 · 10−5
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c.5 additional experiments

c.5.1 Computational Overhead

Table C.11 presents the wall-clock time of an experiment for different mitigation ap-
proaches on CIFAR-100 at 95% sparsity. Note that the reported time includes the 15
epochs of gradual magnitude pruning of the dense model, as well as the 45 epochs of
fine-tuning.

Table C.11: Runtime of different mitigation approaches on CIFAR-100 at 95% sparsity. All runs
are run on NVIDIA A100-SXM4-80GBGPUs. Runtimes are average across 5 runs for
each mitigation method.

Method
Min Median Max

Wall-clock Overhead Wall-clock Overhead Wall-clock Overhead
Time wrt NFT Time wrt NFT Time wrt NFT

NFT 1h 0m 04s 1× 1h 3m 13s 1× 1h 12m 19s 1×
EL 1h 2m 37s 1.031× 1h 4m 34s 1.021× 1h 15m 50s 1.049×
EL+RB 1h 4m 15s 1.058× 1h 7m 10s 1.062× 1h 17m 35s 1.073×
CEAG (No RB) 1h 2m 08s 1.023× 1h 3m 08s 0.998× 1h 8m 35s 0.948×
CEAG 1h 1m 58s 1.020× 1h 4m 28s 1.020× 1h 6m 27s 0.919×

We observe a negligible increase in training time for constrained approaches that use
replay buffers relative to NFT. For approaches that do not use replay buffers, the runtime
is essentially the same as NFT. This overhead is especially insignificant considering that
the CIFAR-100 problem involves 100 constraints.

c.5.2 Comparison with FairGRAPE [LKJ22]

Computational cost: As a benchmarking exercise, we re-ran the code provided by [LKJ22]
for UTKFace Race prediction and Race as protected group*. The method took more * The FairGRAPE

implementation can be
found here:
https://github.com/
Bernardo1998/
FairGRAPE

than 90 hours of compute time on an NVIDIA A100-SXM4-80GB GPU. Given how pro-
hibitively expensive this is, we refrained from running experiments with FairGRAPE.
Furthermore, we expect the runtime to increase for tasks with larger numbers of pro-
tected groups.

UTKFace: [LKJ22] apply their method on UTKFace, but remove race group Others
from the dataset. The authors state that this was done as Others is an ambiguous class.
Since we consider the complete dataset in our experiments, we can not compare directly
to the numbers reported by [LKJ22].

Although we could apply CEAG to the UTKFace dataset without race group Others, we
choose not to since we observe that this group is generally the most disproportionately
affected by pruning. Table C.12 shows that NFT can achievemodels with low disparity on
UTKFace without Others, but presents significantly worse accuracy and higher disparity
on experiments with Others.
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Table C.12: NFT results on UTKFace race prediction with race as group attribute, with and with-
out race group Others.

Setup Train Test

Accuracy ΨPW maxg ψg Accuracy ΨPW maxg ψg

UTKFace (without Others) 99.5± 0.0 2.0± 0.16 0.5± 0.00 86.7± 0.55 10.9± 1.68 7.4± 0.14

UTKFace 98.2± 0.0 9.9± 0.82 8.7± 0.82 79.5± 0.46 6.1± 1.60 2.2± 0.68

c.5.3 Sensitivity Analysis

Table C.13 presents the sensitivity of our approach to the tolerance hyperparameter ϵ on
a UTKFace race prediction task with race as group attribute.

Table C.13: Race prediction task for UTKFace with race as group attribute, at 92.5% sparsity. All
experiments use a dual step size of 2 · 10−3. Results are aggregated across 5 seeds.

Tolerance Accuracy maxg ψg

1.5 93.6 ± 0.1 0.9 ± 0.61
1.0 93.4 ± 0.3 1.1 ± 0.36
0.5 93.2 ± 0.2 1.2 ± 0.44
0 93.2 ± 0.2 0.9 ± 0.24

We observe small improvements in performance for experiments with large tolerance
values. For low tolerance values, we observe that feasibility is not attained. Moreover,
the resulting maxg ψg values are similar across the considered tolerances. These obser-
vations are indicative of robustness to the choice of tolerance.

c.6 comprehensive experimental results

This section contains the results corresponding to all experiments mentioned in Ta-
ble C.2 across all datasets, sparsities, and tasks considered in our work. As mentioned
earlier, all metrics reported in our tables and plots follow the pattern avg± std. Unless
mentioned otherwise, all our experimental metrics are aggregated across 5 seeds.

Someof the tables displayed below are extensions of tables presented in themain paper.
Such tables have been clearly identified in the captions. For the tables reporting group
accuracies, we report the numbers for both the dense model as well as all the sparse
models.

c.6.1 UTKFace

We use MobileNet-V2 [San+18], similar to [LKJ22].
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c.6.1.1 Gender

Table C.14: Groupwise train accuracy for gender prediction in UTKFace with race as protected
attribute, across sparsities.

Sparsity Method White Black Asian Indian Others

85

Dense 100.0 99.9 99.9 99.8 99.3
NFT 99.9± 0.02 99.8± 0.04 99.9± 0.06 99.8± 0.02 99.3± 0.1
EL + RB 99.9± 0.01 99.8± 0.03 99.9± 0.03 99.8± 0.04 99.4± 0.13
CEAG 99.9± 0.03 99.8± 0.06 99.9± 0.05 99.8± 0.03 99.3± 0.12

90

Dense 100.0 99.9 99.9 99.8 99.3
NFT 99.8± 0.03 99.8± 0.04 99.7± 0.09 99.6± 0.1 98.9± 0.17
EL + RB 99.8± 0.05 99.8± 0.05 99.7± 0.09 99.6± 0.08 99.0± 0.17
CEAG 99.8± 0.02 99.8± 0.02 99.7± 0.12 99.7± 0.04 99.1± 0.1

92.5

Dense 100.0 99.9 99.9 99.8 99.3
NFT 99.4± 0.07 99.5± 0.08 98.8± 0.22 99.1± 0.11 98.0± 0.23
EL + RB 99.5± 0.05 99.6± 0.09 98.6± 0.23 99.1± 0.1 98.1± 0.45
CEAG 99.1± 0.22 99.3± 0.28 99.6± 0.12 98.7± 0.11 98.5± 0.29

Table C.15: Groupwise test accuracy for gender prediction in UTKFace with race as protected
attribute, across sparsities.

Sparsity Method White Black Asian Indian Others

85

Dense 94.2 95.0 89.5 93.2 89.5
NFT 92.0± 0.42 94.0± 0.82 87.0± 0.62 92.5± 0.37 88.6± 0.83
EL + RB 92.1± 0.45 94.2± 0.52 87.2± 0.72 92.1± 0.41 88.4± 0.4
CEAG 91.9± 0.3 93.8± 0.41 86.7± 0.75 92.1± 0.55 88.1± 1.03

90

Dense 94.2 95.0 89.5 93.2 89.5
NFT 91.1± 0.67 92.6± 0.57 85.9± 0.95 91.6± 0.67 87.1± 0.85
EL + RB 91.0± 0.1 93.0± 0.38 86.4± 0.64 91.4± 0.45 87.6± 0.83
CEAG 91.0± 0.56 93.2± 0.64 85.5± 0.73 91.8± 0.64 86.3± 1.03

92.5

Dense 94.2 95.0 89.5 93.2 89.5
NFT 90.5± 0.67 92.6± 0.62 85.1± 0.83 91.0± 0.89 87.3± 1.05
EL + RB 90.2± 0.54 93.2± 0.66 85.0± 1.57 90.6± 0.4 86.6± 1.35
CEAG 90.6± 1.0 92.7± 0.2 85.8± 0.93 90.5± 0.76 87.1± 0.91
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Table C.16: Gender prediction onUTKFace with race as group attribute, across sparsities. CEAG
consistently achieves a maxg ψg within the threshold, across sparsities.

Sparsity Method Train Test
Accuracy ΨPW maxg ψg Tol (ϵ) Accuracy ΨPW maxg ψg

85

NFT 99.8± 0.01 0.3± 0.15 0.0± 0.02 – 91.5± 0.25 2.2± 0.87 0.9± 0.43
NFT + ES 98.0± 1.72 1.7± 1.19 1.3± 0.91 – 91.8± 0.28 2.1± 0.69 0.8± 0.23
EL + RB 99.9± 0.02 0.3± 0.18 0.0± 0.01 – 91.5± 0.29 1.9± 0.71 0.9± 0.41
CEAG 99.8± 0.01 0.3± 0.16 0.1± 0.05 ≤ 0.5% 3 91.3± 0.3 2.1± 0.78 0.9± 0.51

90

NFT 99.7± 0.04 0.4± 0.26 0.3± 0.2 – 90.5± 0.2 2.7± 1.03 1.3± 0.65
NFT + ES 97.4± 1.59 2.5± 1.42 1.8± 1.15 – 91.0± 0.15 1.8± 0.9 1.0± 0.65
EL + RB 99.7± 0.05 0.3± 0.16 0.2± 0.15 – 90.6± 0.17 2.0± 0.52 0.8± 0.27
CEAG 99.7± 0.03 0.2± 0.1 0.2± 0.05 ≤ 0.5% 3 90.4± 0.37 3.0± 0.82 1.4± 0.51

92.5

NFT 99.2± 0.08 1.0± 0.17 0.7± 0.19 – 90.0± 0.44 3.1± 0.71 1.4± 0.57
NFT + ES 96.2± 1.82 3.0± 0.98 2.2± 0.8 – 90.4± 0.37 2.8± 0.55 1.2± 0.52
EL + RB 99.2± 0.07 1.3± 0.34 0.9± 0.3 – 89.8± 0.29 3.1± 1.64 1.5± 0.98
CEAG 99.1± 0.14 0.8± 0.24 0.4± 0.09 ≤ 0.5% 3 90.1± 0.52 2.2± 0.75 1.0± 0.2

0.0 0.5 1.0

Max Excess Accuracy Gap [maxg ψg] (%)

99.0

99.2

99.4

99.6

99.8

A
cc

u
ra

cy
(%

)

Train

0 1 2

Max Excess Accuracy Gap [maxg ψg] (%)

89.5

90.0

90.5

91.0

91.5

A
cc

u
ra

cy
(%

)

Test

Methods

NFT

EL + RB

CEAG

Sparsity

85 %

90 %

92.5 %

Sparsity

85 %

90 %

92.5 %

Figure C.3: UTKFace gender prediction with race as protected attribute.
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c.6.1.2 Race

Table C.17: Groupwise train accuracy for race prediction in UTKFace with race as protected at-
tribute, across sparsities.

Sparsity Method White Black Asian Indian Others

85

Dense 99.8 99.7 99.9 99.8 99.5
NFT 99.7± 0.08 99.6± 0.11 99.8± 0.06 99.7± 0.06 99.0± 0.13
EL + RB 99.6± 0.11 99.6± 0.18 99.8± 0.1 99.8± 0.14 99.5± 0.1
CEAG 99.6± 0.13 99.5± 0.17 99.7± 0.09 99.7± 0.19 99.8± 0.09

90

Dense 99.8 99.7 99.9 99.8 99.5
NFT 98.6± 0.26 99.2± 0.24 99.3± 0.04 98.9± 0.2 89.0± 0.79
EL + RB 98.4± 0.19 98.8± 0.18 99.2± 0.22 98.7± 0.3 94.3± 0.61
CEAG 95.7± 0.35 95.5± 0.35 96.0± 0.4 97.1± 0.52 98.4± 0.42

92.5

Dense 99.8 99.7 99.9 99.8 99.5
NFT 96.8± 0.15 98.0± 0.23 98.2± 0.44 96.3± 0.47 69.4± 3.72
EL + RB 95.9± 0.37 97.2± 0.23 97.6± 0.55 95.9± 0.56 82.5± 1.36
CEAG 93.2± 0.28 92.9± 0.74 92.8± 0.99 93.9± 0.79 95.4± 0.35

Table C.18: Groupwise test accuracy for race prediction in UTKFace with race as protected at-
tribute, across sparsities.

Sparsity Method White Black Asian Indian Others

85

Dense 90.6 87.9 88.5 80.7 29.2
NFT 87.3± 0.24 84.4± 1.32 86.7± 0.82 74.9± 1.01 31.0± 1.55
EL + RB 87.2± 0.48 84.1± 0.74 86.1± 1.33 75.2± 1.53 32.8± 1.47
CEAG 86.5± 0.31 84.3± 1.31 85.7± 1.25 75.3± 1.26 32.1± 2.36

90

Dense 90.6 87.9 88.5 80.7 29.2
NFT 86.5± 0.52 83.3± 1.28 84.2± 2.46 74.6± 0.44 28.8± 1.95
EL + RB 86.2± 0.94 83.7± 0.91 83.6± 1.15 75.3± 1.08 31.4± 1.33
CEAG 86.6± 0.83 84.2± 1.1 85.6± 1.12 77.7± 1.07 29.1± 2.73

92.5

Dense 90.6 87.9 88.5 80.7 29.2
NFT 86.3± 0.78 83.8± 0.58 84.6± 0.8 73.8± 1.04 28.5± 2.52
EL + RB 85.1± 1.0 82.8± 1.37 83.5± 1.49 73.4± 1.09 30.9± 2.49
CEAG 85.5± 0.6 83.0± 0.65 84.6± 1.66 76.3± 0.47 31.8± 2.38
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Table C.19: Race prediction on UTKFace with race as protected attribute, across sparsities.
CEAG almost always achieves a maxg ψg within the threshold. It also has the min-
imum maxg ψg across sparsities.

Sparsity Method Train Test
Accuracy ΨPW maxg ψg Tol (ϵ) Accuracy ΨPW maxg ψg

85

NFT 99.7± 0.02 0.3± 0.16 0.2± 0.13 – 80.6± 0.42 7.6± 1.8 2.7± 0.78
NFT + ES 92.1± 4.2 35.1± 20.55 30.3± 17.82 – 81.1± 0.51 10.7± 2.01 5.2± 2.81
EL + RB 99.7± 0.03 0.4± 0.09 0.2± 0.08 – 80.6± 0.44 9.2± 2.67 2.4± 1.16
CEAG 99.6± 0.05 0.8± 0.14 0.2± 0.05 ≤ 0.25% 3 80.3± 0.5 8.4± 2.95 2.0± 0.91

90

NFT 98.2± 0.08 9.9± 0.82 8.7± 0.82 – 79.5± 0.46 6.1± 1.6 2.2± 0.68
NFT + ES 90.6± 4.72 45.5± 22.51 40.6± 20.13 – 81.0± 0.24 8.0± 4.73 5.3± 4.68
EL + RB 98.3± 0.06 4.4± 0.58 3.6± 0.61 – 79.7± 0.37 8.0± 1.68 1.7± 0.91
CEAG 96.1± 0.11 3.5± 0.51 0.8± 0.26 ≤ 1% 3 80.5± 0.25 5.2± 1.86 1.5± 0.2

92.5

NFT 95.1± 0.36 28.2± 3.49 25.3± 3.35 – 79.4± 0.17 6.1± 3.0 2.5± 1.01
NFT + ES 91.2± 4.29 43.5± 10.64 38.7± 8.87 – 80.2± 0.21 5.7± 2.79 3.5± 1.76
EL + RB 95.4± 0.22 14.6± 1.31 12.5± 1.12 – 78.6± 0.33 9.0± 3.2 2.2± 0.95
CEAG 93.4± 0.31 3.5± 0.86 1.1± 0.36 ≤ 1% 7 79.6± 0.4 8.0± 2.59 1.3± 0.43
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Figure C.4: UTKFace race prediction with race as protected attribute.
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c.6.1.3 Intersectional

For the sake of brevity, we use acronyms to refer to the intersectional sub-groups. The
acronyms are separated by a dash, the initial part refers to the race and the later part
refers to the gender. For instance, W-M refers to White and Male. Other races are B-
Black, A-Asian, I-Indian, and O-Others.

Table C.20: Groupwise train accuracy for race prediction in UTKFace with intersection of race
and gender as protected attribute, across sparsities.

Sparsity Method W-M W-F B-M B-F A-M A-F I-M I-F O-M O-F

85

Dense 99.7 99.9 99.6 99.8 99.8 99.9 99.7 99.9 99.3 99.6
NFT 99.6± 0.09 99.7± 0.16 99.6± 0.18 99.7± 0.08 99.6± 0.09 99.9± 0.09 99.7± 0.1 99.8± 0.12 98.6± 0.37 99.2± 0.27
EL + RB 99.5± 0.09 99.5± 0.14 99.6± 0.16 99.7± 0.07 99.7± 0.12 99.9± 0.06 99.7± 0.15 99.9± 0.15 99.6± 0.19 99.7± 0.13
CEAG 99.6± 0.11 99.7± 0.1 99.6± 0.2 99.7± 0.09 99.7± 0.1 100.0± 0.04 99.7± 0.17 99.9± 0.07 99.4± 0.14 99.6± 0.17

90

Dense 99.7 99.9 99.6 99.8 99.8 99.9 99.7 99.9 99.3 99.6
NFT 98.6± 0.2 98.4± 0.21 99.1± 0.27 99.1± 0.23 99.2± 0.24 99.5± 0.15 99.0± 0.33 98.8± 0.21 87.7± 1.07 89.9± 1.88
EL + RB 98.3± 0.31 98.0± 0.29 98.7± 0.44 98.6± 0.28 98.9± 0.27 99.2± 0.15 98.3± 0.6 98.1± 0.45 97.3± 0.64 95.6± 0.59
CEAG 96.4± 0.39 96.0± 0.33 96.1± 0.34 96.2± 0.27 95.3± 0.28 97.0± 0.78 95.7± 0.66 96.2± 0.57 96.0± 0.98 96.6± 1.29

92.5

Dense 99.7 99.9 99.6 99.8 99.8 99.9 99.7 99.9 99.3 99.6
NFT 97.1± 0.61 96.7± 0.42 97.7± 0.46 98.0± 0.27 98.2± 0.33 98.8± 0.34 96.5± 0.54 96.3± 0.71 63.8± 1.49 70.9± 2.09
EL + RB 95.9± 0.48 95.1± 0.43 96.8± 0.32 96.9± 0.23 97.1± 0.5 98.1± 0.58 94.8± 0.83 94.8± 0.51 88.7± 1.91 86.4± 1.64
CEAG 94.2± 0.49 93.4± 0.16 93.6± 0.93 94.2± 0.58 91.9± 1.18 94.2± 0.55 91.6± 0.41 92.8± 1.31 92.0± 0.99 92.7± 1.89

Table C.21: Groupwise test accuracy for race prediction in UTKFace with intersection of race
and gender as protected attribute, across sparsities.

Sparsity Method W-M W-F B-M B-F A-M A-F I-M I-F O-M O-F

85

Dense 90.9 90.2 86.9 88.9 87.5 89.3 81.0 80.4 26.4 31.6
NFT 87.3± 0.7 86.5± 0.79 82.6± 1.21 86.7± 1.66 84.2± 1.91 87.5± 0.6 74.3± 1.66 78.4± 2.26 29.3± 1.56 32.0± 3.4
EL + RB 87.3± 0.9 86.1± 1.18 82.2± 1.73 85.6± 0.51 84.5± 2.53 86.7± 1.88 74.6± 1.57 78.1± 1.15 31.2± 2.36 32.1± 2.81
CEAG 87.2± 0.65 85.8± 0.76 82.6± 1.27 86.0± 0.96 84.6± 0.52 87.7± 1.76 74.0± 1.18 77.2± 1.7 31.5± 1.83 32.3± 3.18

90

Dense 90.9 90.2 86.9 88.9 87.5 89.3 81.0 80.4 26.4 31.6
NFT 86.8± 0.87 86.4± 0.97 81.9± 1.5 85.2± 1.1 82.2± 2.46 84.4± 1.99 74.2± 0.53 75.4± 1.09 26.8± 3.26 31.6± 1.74
EL + RB 85.9± 1.17 85.6± 1.33 82.5± 0.58 83.8± 0.48 83.4± 1.95 85.0± 2.07 73.8± 1.29 76.1± 1.45 30.3± 1.11 32.3± 2.81
CEAG 86.2± 1.35 87.2± 0.92 83.5± 1.57 85.6± 0.6 82.6± 1.52 86.5± 1.22 76.9± 1.26 76.6± 1.23 25.8± 2.63 29.8± 1.16

92.5

Dense 90.9 90.2 86.9 88.9 87.5 89.3 81.0 80.4 26.4 31.6
NFT 86.5± 1.04 86.6± 0.92 81.9± 1.48 83.0± 1.28 82.3± 1.09 85.5± 1.61 72.8± 1.26 75.6± 2.2 26.8± 3.56 29.6± 1.36
EL + RB 85.0± 0.83 84.9± 0.9 81.8± 0.92 82.8± 1.28 81.7± 0.97 85.6± 1.32 72.8± 0.81 74.0± 2.07 32.8± 6.05 33.9± 2.71
CEAG 86.8± 0.64 85.3± 1.22 82.5± 1.47 84.8± 0.58 81.8± 1.98 86.2± 1.15 73.7± 1.73 76.0± 1.41 29.5± 1.4 30.7± 2.73
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Table C.22: Race prediction task on theUTKFace dataset with the intersection of race and gender
as group attribute, across sparsities. For instance, if a sample has race as Black and
gender as Female, its group label is Black-Female. CEAG consistently achieves a
maxg ψg within the threshold, across sparsities. This table is an extension of Table 8.2.

Sparsity Method Train Test
Accuracy ΨPW maxg ψg Tol (ϵ) Accuracy ΨPW maxg ψg

85

NFT 99.6± 0.03 0.8± 0.26 0.5± 0.33 – 80.6± 0.44 10.3± 2.09 3.4± 1.29
NFT + ES 91.8± 4.03 37.0± 21.45 31.8± 18.93 – 81.2± 0.4 13.0± 3.29 5.2± 2.03
EL + RB 99.7± 0.02 0.8± 0.37 0.2± 0.08 – 80.4± 0.29 11.7± 3.4 3.4± 1.53
CEAG 99.7± 0.03 0.5± 0.1 0.2± 0.04 ≤ 0.5% 3 80.4± 0.27 12.2± 2.62 3.6± 1.14

90

NFT 98.1± 0.06 11.5± 0.72 10.0± 0.67 – 79.6± 0.49 8.9± 2.35 3.1± 0.46
NFT + ES 90.5± 4.73 49.8± 23.02 44.8± 20.76 – 81.0± 0.24 12.0± 5.34 6.9± 4.79
EL + RB 98.3± 0.19 3.2± 0.63 2.4± 0.61 – 79.4± 0.5 11.4± 0.91 3.0± 1.06
CEAG 96.2± 0.1 2.4± 0.59 1.0± 0.27 ≤ 3% 3 80.2± 0.13 6.0± 2.48 2.3± 1.03

92.5

NFT 95.1± 0.17 34.2± 1.64 30.7± 1.48 – 79.2± 0.16 8.8± 3.18 3.6± 1.3
NFT + ES 91.2± 2.66 53.3± 9.55 48.0± 8.28 – 80.4± 0.35 7.5± 3.41 5.4± 3.13
EL + RB 95.4± 0.27 11.1± 1.45 8.6± 1.42 – 78.7± 0.27 16.3± 3.92 3.3± 0.62
CEAG 93.4± 0.31 3.8± 0.4 2.3± 0.41 ≤ 3% 3 79.5± 0.14 10.8± 2.21 3.3± 1.02
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Figure C.5: UTKFace race prediction with race and gender (intersectional) as protected at-
tributes.
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c.6.2 FairFace

We make use of ResNet-34 models [He+16] on FairFace, similar to [LKJ22].

c.6.2.1 Gender

Table C.23: Groupwise train accuracy for gender prediction in FairFace with race as protected
attribute.

Sparsity Method East Asian Indian Black White Middle Eastern Latino Hispanic S.E. Asian

99

Dense 97.2 97.1 94.9 97.4 98.0 97.2 96.8
NFT 99.4± 0.21 99.4± 0.23 98.9± 0.12 99.3± 0.14 99.5± 0.15 99.3± 0.2 99.2± 0.31

EL + RB 99.2± 0.21 99.4± 0.11 99.0± 0.24 99.4± 0.03 99.6± 0.06 99.4± 0.09 99.2± 0.13
CEAG 99.3± 0.16 99.2± 0.21 98.9± 0.25 99.3± 0.12 99.5± 0.13 99.3± 0.15 99.1± 0.11

Table C.24: Groupwise test accuracy for gender prediction in FairFace with race as protected at-
tribute.

Sparsity Method East Asian Indian Black White Middle Eastern Latino Hispanic S.E. Asian

99

Dense 95.2 95.6 90.0 94.2 96.6 95.2 94.4
NFT 92.1± 0.54 93.4± 0.53 86.5± 0.78 91.6± 0.48 95.1± 0.56 93.4± 0.59 91.4± 0.59

EL + RB 92.4± 0.41 92.9± 1.14 86.8± 0.68 91.8± 0.2 94.9± 0.39 93.6± 0.36 91.4± 0.33
CEAG 92.8± 0.49 92.7± 0.32 86.2± 0.45 91.3± 0.66 94.6± 0.25 93.8± 0.25 91.2± 0.55

Table C.25: Gender prediction on FairFace with race as protected attribute. CEAG achieves a
maxg ψg within the threshold.

Sparsity Method Train Test
Accuracy ΨPW maxg ψg Tol (ϵ) Accuracy ΨPW maxg ψg

99

NFT 99.3± 0.17 2.6± 0.23 0.9± 0.13 – 91.8± 0.17 2.4± 0.81 1.1± 0.42
NFT + ES 97.6± 1.29 1.5± 0.67 0.5± 0.19 – 92.2± 0.13 2.8± 0.45 1.5± 0.35
EL + RB 99.3± 0.09 2.7± 0.22 0.8± 0.07 – 91.9± 0.21 2.1± 0.39 1.0± 0.34
FairGrape – – – – 90.5 2.3 1.0
CEAG 99.2± 0.14 2.7± 0.22 0.9± 0.07 ≤ 1% 3 91.7± 0.1 2.4± 0.48 1.2± 0.44
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Figure C.6: FairFace gender prediction with race as protected attribute.
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c.6.2.2 Race

Table C.26: Groupwise train accuracy for race prediction in FairFace with race as protected at-
tribute.

Sparsity Method East Asian Indian Black White Middle Eastern Latino Hispanic S.E. Asian

99

Dense 84.8 81.9 90.9 84.7 76.8 68.0 74.1
NFT 81.1± 0.88 78.2± 0.59 87.3± 0.43 80.9± 1.06 70.2± 0.73 63.2± 1.47 68.6± 1.18

EL + RB 78.7± 0.58 77.0± 0.95 84.7± 0.93 78.8± 1.03 71.9± 0.39 69.7± 1.13 70.1± 1.13
CEAG 80.7± 0.95 77.9± 0.61 87.2± 0.61 80.4± 1.14 73.7± 0.79 63.1± 1.46 68.5± 1.22

Table C.27: Groupwise test accuracy for race prediction in FairFace with race asmetrics attribute.

Sparsity Method East Asian Indian Black White Middle Eastern Latino Hispanic S.E. Asian

99

Dense 78.3 72.2 86.2 77.2 63.9 58.1 64.3
NFT 72.5± 0.98 65.8± 0.97 81.4± 0.41 70.1± 1.34 55.7± 0.94 50.9± 1.19 56.1± 1.06

EL + RB 70.6± 1.28 65.0± 1.24 79.3± 0.57 68.3± 0.85 56.5± 0.54 54.8± 1.07 57.7± 1.86
CEAG 72.5± 1.25 65.8± 1.04 81.5± 0.6 69.5± 1.32 57.5± 0.84 50.3± 1.22 56.4± 0.89

Table C.28: Race prediction task on FairFace with race as group attribute. Tol (ϵ) is the tolerance
hyper-parameter of CEAG. We do not specify ϵ for other formulations as they do
not admit a tolerance. CEAG achieves a maxg ψg within the threshold. This table is
already presented in the main paper as Table 8.1, we include this for completeness.

Sparsity Method Train Test
Accuracy ΨPW maxg ψg Tol (ϵ) Accuracy ΨPW maxg ψg

99

NFT 76.1± 0.19 3.9± 0.91 2.3± 0.26 – 65.2± 0.44 4.2± 0.51 2.1± 0.51
NFT + ES 74.0± 2.55 7.2± 3.35 4.0± 1.38 – 65.4± 0.35 6.3± 2.59 2.9± 1.3
EL + RB 76.1± 0.13 8.8± 1.26 2.6± 0.21 – 65.1± 0.44 6.0± 1.51 2.4± 0.36
FairGrape – – – – 65.1 15.9 10.7
CEAG 76.2± 0.13 3.5± 0.61 1.8± 0.42 ≤ 2% 3 65.2± 0.37 4.3± 0.8 2.0± 0.32
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Figure C.7: FairFace race prediction with race as protected attribute.
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c.6.2.3 Intersectional

For the sake of brevity, we use acronyms to refer to the intersectional sub-groups. The
acronyms are separated by a dash, the initial part refers to the race and the later part
refers to the gender. For instance, EA-M refers to East Asian and Male. Other races are
I-Indian, B-Black, W-White, ME-Middle Eastern, LH-Latino Hispanic, and SA-South
East Asian.

Table C.29: Groupwise train accuracy for race prediction in FairFace with intersection of race
and gender as protected attribute.

Sparsity Method EA-M EA-F I-M I-F B-M B-F W-M W-F ME-M ME-F LH-M LH-F SA-M SA-F

99

Dense 83.8 86.3 80.9 83.3 89.8 91.9 83.7 85.4 80.7 68.0 64.9 70.9 75.3 72.4
NFT 78.6± 0.91 83.2± 0.81 76.8± 0.6 78.9± 0.48 86.5± 0.57 87.9± 0.43 79.3± 1.14 82.0± 1.08 74.0± 0.49 60.3± 1.02 59.3± 1.72 66.4± 1.31 69.8± 1.57 67.1± 1.16

EL + RB 77.9± 0.77 82.5± 0.71 76.7± 0.72 78.9± 0.31 86.0± 0.58 87.3± 0.52 78.8± 1.33 81.5± 1.03 74.4± 0.56 62.6± 0.8 61.0± 2.1 67.4± 1.57 70.2± 1.17 67.3± 1.22
CEAG 78.6± 0.72 83.1± 0.85 76.5± 0.77 79.0± 0.35 86.5± 0.58 87.9± 0.57 79.1± 1.15 81.7± 1.13 74.8± 0.77 63.1± 0.75 59.5± 1.59 66.0± 1.31 69.5± 1.48 66.8± 1.16

Table C.30: Groupwise test accuracy for race prediction in FairFace with intersection of race and
gender as protected attribute.

Sparsity Method EA-M EA-F I-M I-F B-M B-F W-M W-F ME-M ME-F LH-M LH-F SA-M SA-F

99

Dense 78.8 77.9 68.5 75.9 86.1 86.4 75.6 79.1 71.7 47.7 53.5 62.5 67.3 61.0
NFT 70.6± 0.98 74.3± 1.63 61.4± 1.42 70.8± 0.9 83.1± 0.23 79.8± 0.53 69.3± 1.33 71.0± 1.78 62.4± 1.23 42.0± 2.72 46.1± 1.42 55.7± 1.28 57.6± 0.83 54.8± 1.0

EL + RB 69.6± 0.95 73.9± 1.73 60.7± 1.62 70.4± 0.64 82.7± 1.02 79.2± 1.19 68.8± 1.3 70.3± 1.2 62.8± 0.85 44.2± 1.93 46.3± 1.69 56.1± 1.42 58.0± 0.72 55.2± 0.84
CEAG 70.7± 1.15 74.3± 1.87 61.2± 1.48 70.9± 1.11 82.5± 0.24 80.1± 0.73 69.4± 1.22 70.5± 1.6 62.6± 1.05 43.3± 1.74 46.1± 1.18 55.1± 2.6 57.6± 0.82 55.1± 1.32

Table C.31: Race prediction on FairFace with intersection of gender and race as protected at-
tribute. CEAG achieves a maxg ψg within the threshold.

Sparsity Method Train Test
Accuracy ΨPW maxg ψg Tol (ϵ) Accuracy ΨPW maxg ψg

99

NFT 75.8± 0.17 5.2± 0.94 2.9± 0.42 – 65.3± 0.45 7.6± 0.66 3.4± 0.73
NFT + ES 73.7± 2.33 8.9± 3.83 4.6± 2.14 – 65.4± 0.37 9.0± 2.45 4.3± 1.56
EL + RB 75.8± 0.16 4.0± 1.72 2.3± 0.15 – 65.1± 0.4 7.6± 0.96 3.1± 0.36
CEAG 75.8± 0.14 4.3± 0.42 2.3± 0.26 ≤ 2.5% 3 65.3± 0.51 7.6± 1.23 3.5± 0.97
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Figure C.8: FairFace race prediction with race and gender (intersection) as protected attribute.
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c.6.3 CIFAR-100

We consider CifarResNet-56 [Che21]models for this task. We consider a scenario where
both the target and group attributes correspond to the class labels. In the context of miti-
gating the disparate impact of pruning, wewant to ensure that none of the classes degrade
more than the average degradation with a tolerance of ϵ. The dense model performance
is 72.61%.

Table C.32: CIFAR-100 classification with class labels as protected attribute. CEAG yields the best
model in terms of disparate impact on the training set, and is competitive in terms
of ΨPW and maxg ψg on the test set.

Sparsity Method Train Test
Accuracy ΨPW maxg ψg Tol (ϵ) Accuracy ΨPW maxg ψg

90

NFT 99.9± 0.0 0.9± 0.18 0.4± 0.18 – 66.7± 0.35 25.0± 3.08 12.9± 2.92
NFT + ES 99.9± 0.01 1.1± 0.3 0.6± 0.3 – 66.9± 0.27 24.6± 1.52 12.7± 1.72

EL 99.8± 0.03 3.1± 0.61 2.4± 0.59 – 67.0± 0.32 24.4± 3.13 12.4± 1.72
EL + RB 99.9± 0.01 1.3± 0.23 0.8± 0.22 – 67.0± 0.38 23.6± 1.52 12.2± 2.06

CEAG (no RB) 100.0± 0.01 1.0± 0.09 0.4± 0.09 ≤ 1% 3 66.4± 0.31 26.4± 3.21 13.8± 1.77
CEAG 99.9± 0.01 1.0± 0.09 0.4± 0.08 ≤ 1% 3 66.7± 0.34 23.4± 1.52 12.5± 1.4

92.5

NFT 99.8± 0.02 3.7± 0.86 3.0± 0.87 – 64.9± 0.39 26.2± 5.22 14.3± 3.39
NFT + ES 99.3± 0.2 6.8± 1.9 5.8± 1.8 – 65.2± 0.42 27.4± 2.3 14.6± 1.97

EL 98.5± 0.09 11.3± 0.9 9.8± 0.95 – 65.3± 0.51 25.8± 2.05 14.1± 1.29
EL + RB 99.5± 0.01 6.7± 1.42 5.7± 1.48 – 65.3± 0.41 24.2± 2.86 13.3± 2.35

CEAG (no RB) 99.6± 0.04 2.6± 0.3 1.7± 0.19 ≤ 2% 3 65.0± 0.37 27.2± 2.59 14.9± 2.48
CEAG 99.6± 0.04 2.4± 0.17 1.6± 0.15 ≤ 2% 3 64.8± 0.3 25.0± 1.87 13.8± 1.16

95

NFT 96.2± 0.09 14.8± 1.16 11.1± 1.24 – 62.6± 0.29 28.4± 3.21 15.6± 2.57
NFT + ES 93.9± 0.83 20.0± 1.52 14.6± 1.43 – 63.3± 0.21 30.6± 5.55 16.1± 3.22

EL 87.9± 0.45 21.4± 1.36 14.5± 1.31 – 60.7± 0.48 32.8± 3.7 16.1± 4.57
EL + RB 94.6± 0.12 18.4± 1.05 13.6± 1.07 – 62.8± 0.16 27.4± 1.34 14.8± 0.85

CEAG (no RB) 95.8± 0.15 9.2± 0.52 5.8± 0.53 ≤ 5% 7 62.5± 0.41 29.6± 4.34 17.1± 3.59
CEAG 95.6± 0.12 9.1± 0.64 5.7± 0.49 ≤ 5% 7 62.7± 0.28 27.6± 1.14 14.8± 1.52
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Figure C.9: CIFAR-100 classification with class labels as both target and protected attributes.
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d.1 further discussion on prior works using pid controls in
optimization

• In Stooke et al. [SAA20], the authors focus almost exclusively on applying PID
control to constrained reinforcement learning. The authors do not explore the op-
timization aspects of PID-based updates for Lagrange multipliers, which are the
main focus of ourwork. Our key theoretical contribution (Thm. 10.4.1) shows that
νPI provides a generalization ofmomentum-based optimization techniques. Note
that the controller considered by Stooke et al. [SAA20] is unable to generalizemo-
mentum methods. Thanks to the unifying framework provided by Thm. 10.4.1,
we provide insights to understand why momentum fails at Lagrangian optimiza-
tion tasks (Fig. 10.5). Moreover, our experiments encompass SVMs, sparsity, and
fairness tasks, and are not restricted to reinforcement learning.

• An et al. [An+18] propose directly updating the parameters of a neural network
using a PID controller (for unconstrained minimization only). Their approach
has not been widely adopted by the deep learning community, possibly due to
the highly specialized training procedures that have been developed for training
neural networks. Although connected due to their use of PID control, this paper
is not directly relevant to our work as we limit our scope to not modifying the
optimization protocol for the (primal) model parameters.

• The work of Casti et al. [Cas+23] focuses on the theoretical aspects of using PID
control for problems with linear constraints. Their analysis is not directly applica-
ble to our setting since we are interested in general machine learning applications
involving nonconvex constraints.

• Hu and Lessard [HL17] present control interpretations of first-order optimiza-
tion methods and show how worst-case convergence rates of optimization algo-
rithms can be derived from a control theoretical perspective. The idea of examin-
ing a possible connection between our PI algorithm and other momentum meth-
ods was inspired by this work.
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d.2 connections between νpi and momentum methods

Table D.1: Classical optimization methods as instances of νPI (ν, κp, κi; ξ0).

Algorithm ξ0 κp κi ν

UnifiedMomentum (α, β, γ) (1− β)e0 − αβ

(1− β)2
[1− γ(1− β)] α

1− β
β

Polyak (α, β) (1− β)e0 − αβ

(1− β)2
α

1− β
β

Nesterov (α, β) (1− β)e0 − αβ2

(1− β)2
α

1− β
β

PI e0 κp κi 0

OptimisticGradientAscent (α) e0 α α 0

νPI (ν, κp, κi) in practice 0 κi κp ν

GradientAscent (α) – 0 α 0

Lemma D.2.1 The νPI (ν, κp, κi; ξ0) algorithm can be equivalently expressed as the re-
cursion:

θ1 = θ0 + κie0 + κpξ0 (D.1a)
ξt = νξt−1 + (1− ν)et (D.1b)

θt+1 = θt + κiet + κp(1− ν) (et − ξt−1) for t ≥ 1 (D.1c)

Proof (Thm. D.2.1) For t ≥ 1, we have:

θt+1 − θt
(νPI3)
= κpξt + κi

t∑
τ=0

eτ − κpξt−1 − κi
t−1∑
τ=0

eτ (D.2)

= κiet + κp(ξt − ξt−1) (D.3)
(νPI2)
= κiet + κp(1− ν)(et − ξt−1) (D.4)

Lemma D.2.2 The UnifiedMomentum (α, β, γ;ϕ0 = 0) algorithm can be expressed as
the single-parameter recurrence:

θ1 = θ0 + α(1 + βγ)e0 (D.5a)
θt+1 = θt + αet + β(θt − θt−1) + αβγ (et − et−1) for t ≥ 1. (D.5b)

Proof (Thm. D.2.2)

ϕ1
(UM2)
= β��ϕ0 + αe0 = αe0 (D.6a)

θ1
(UM3)
= θ0 + ϕ1 + βγ (ϕ1 −��ϕ0) = θ0 + α(1 + βγ)e0. (D.6b)
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θt+1
(UM3)
= θt + ϕt+1 + βγ (ϕt+1 − ϕt) (D.7a)

(UM2)
= θt + βϕt + αet + βγ (βϕt + αet − βϕt−1 − αet−1) (D.7b)
= θt + βϕt + αet + βγ (β(ϕt − ϕt−1) + α(et − et−1)) (D.7c)
= θt + αet + β [ϕt + γβ(ϕt − ϕt−1)] + αβγ(et − et−1) (D.7d)

(UM3)
= θt + αet + β (θt − θt−1) + αβγ(et − et−1). (D.7e)

Theorem D.2.3 (Replica of Thm. 10.4.1) Under the same initialization θ0, we have that
UnifiedMomentum (α, β 6= 1, γ;ϕ0 = 0) is a special case of νPI (ν, κp, κi; ξ0) with the
following hyperparameter choices:

ν = β κp = −
αβ

(1− β)2
[1− γ(1− β)] κi =

α

1− β
ξ0 = (1−β)e0 (D.8)

Proof (Thm. 10.4.1) We want to find values of ν κp, κi and ξ0 such that the sequence of
iterates produced by νPI (ν, κp, κi; ξ0) satisfies Eq. (D.5b). For t ≥ 2 we have:

θt+1 − θt
(D.5b)
= αet + β(θt − θt−1) + αβγ (et − et−1) (D.9)

κiet+κp (ξt − ξt−1)
(D.1c)
= αet+β (κiet−1 + κp (ξt−1 − ξt−2))+αβγ (et − et−1) (D.10)

et (κi − α− αβγ)+et−1 (−βκi + αβγ)+κp [ξt − ξt−1 − β (ξt−1 − ξt−2)] = 0 (D.11)

Several applications of (νPI 2) give:

ξt − ξt−1 − β (ξt−1 − ξt−2) (D.12)
= (1− ν) [et − ξt−1]− βξt−1 + βξt−2 (D.13)
= (1− ν)et − (1 + β − ν)ξt−1 + βξt−2 (D.14)
= (1− ν)et − (1 + β − ν) [νξt−2 + (1− ν)et−1] + βξt−2 (D.15)
= (1− ν)et − (1− ν)(1 + β − ν)et−1 + (1− ν)(β − ν)ξt−2 (D.16)

Thus we can re-arrange to get:

[
et et−1 ξt−2

] κi + (1− ν)κp − α(1 + βγ)

−βκi − (1− ν)(1 + β − ν)κp + αβγ

(1− ν)(β − ν)κp

 = 0 (D.17)
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Therefore, both algorithms coincide when the following system of equations is satisfied:

κi + (1− ν)κp = α(1 + βγ) (D.18a)
βκi + (1− ν)(1− ν + β)κp = αβγ (D.18b)

(1− ν)(β − ν)κp = 0 (D.18c)

For β 6= 1, the solution to this system is given by:

ν ← β κi ←
α

1− β
κp ← −

αβ

(1− β)2
[1− γ(1− β)] (D.19)

Finally, we choose the initial condition ξ0 that ensures that the first two steps of the algo-
rithms match (at t = 0 and t = 1). The first iterate of νPI is given by θ1 = θ0 + κie0 +
κpξ0 as per Eq. (D.1a). Meanwhile, the first iterate of UnifiedMomentum is given by:

θ1
(D.5a)
= θ0 + α(1 + βγ)e0 (D.20)

(D.19)
= θ0 + (κi + (1− β)κp)e0 = θ0 + κie0 + (1− β)κpe0 (D.21)

Therefore, setting ξ0 ← (1− β)e0 makes both algorithms match in their first step at t = 0.

The second iterate from UnifiedMomentum is θ2 = θ1 + αβ [1− γ(1− β)] e0 +
α [1− γ(1− β)) e1. On the other hand, the second iterate of νPI is θ2 = θ1 + (κi +
κp(1 − ν))e1 − κp(1 − β)ξ0. It is easy to see that, given the hyperparameter choices
outlined above, both algorithms match at t = 1.

An induction argument yields the equivalence between the algorithms.

d.3 interpreting the updates of νpi

Consider the execution of the algorithms νPI (ν, κp, κi) and GA (α = κi) at time t, with
updates given by:

θνPIt+1 = θt + κiet + κp(1− ν)(et − ξt−1) (D.22)
θGA
t+1 = θt + κiet (D.23)

Let ψ =
κp(1−ν)

κi+κp(1−ν) . Note that whenever κp and κi are non-negative, ψ ∈ [0, 1]. The
ratio between these updates is:

∆νPI
∆GA

=
θνPIt+1 − θt
θGA
t+1 − θt

=
κiet + κp(1− ν)(et − ξt−1)

κiet
(D.24)

= 1 +
κp(1− ν)

κi
− κp(1− ν)

κi

ξt−1

et
(D.25)

=
1

1− ψ

[
1− ψξt−1

et

]
. (D.26)
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PI (Fig. D.1, middle). We consider νPI (ν = 0, κp = 1, κi = 1) in, which recovers
PI (κp = 1, κi = 1). The update of the PI optimizer relative to GA is as follows:

1. Mode A When either et ≥ ξt−1 or et ≤ 0, the relative update exceeds one and
thus the PI controller update can be seen as eager compared to gradient ascent.

a) When et ≥ ξt−1, the constraint has historically been infeasible and the cur-
rent violation indicates an increase in infeasibility. In this case, PI not only
increases the value of the multiplier but does so more strongly than GA. This
proactive behavior serves to counteract the infeasibility increase.

b) When et ≤ 0, the constraint has been satisfied despite historical infeasibility
(ξt−1 > 0). Here, the PI controller decreases the multiplier much more than
GA. This serves to prevent overshoot into the feasible region.

2. Mode B In the range 0 < ψξt−1 ≤ et ≤ ξt−1, the constraint at step t (i) is not
satisfied, (ii) it is smaller than the historical EMA of violations ξt−1, but not signif-
icantly (not beyond a factor of ψ). In this case, the PI controller proactively exerts
friction by having a smaller update than GA. This reduces the risk of overshoot
under the assumption that the primal variables continue to make progress toward
feasibility.

3. Mode C In the optimistic phase, where 0 ≤ et ≤ κξt−1, the PI controller’s up-
date goes in the opposite direction to that of GA: ∆νPI

∆GA ≤ 0. This corresponds to
a scenario where the constraint made significant progress toward feasibility rela-
tive to the historic violation EMA. While GA would increase the multiplier in this
case (since gt > 0), PI decreases the value of the multiplier. This is useful to pre-
vent overshoot since significant progress toward feasibility is an indicator that the
multiplier is already exerting sufficient pressure for the constraints to be satisfied.

Negativemomentum(Fig.D.1, left). WeconsiderPolyak (β = −0.4) as a realization
of νPI, following Thm. 10.4.1. We observe similar behavior to that of νPI (ν = 0, κp =
1, κi = 1), in the middle figure of Fig. D.1. Note that the current illustration assumes an
equal value of the “optimizer state” ξt−1 between the momentum and non-momentum
cases. However, the value of ξt will be different depending on themomentum coefficient
as β = ν also influences the update of ξ, see Algo. 3.

Positive momentum (Fig. D.1, right). The right plot of Fig. D.1 considers Polyak
(β = 0.3) as a realization of νPI, following Thm. 10.4.1. We observe significantly differ-
ent behavior compared to the left and middle plots.

1. Mode A When infeasibility is reduced, the algorithm is eager to increase the mul-
tiplier more than what GA would! This is a counter-intuitive operation of the al-
gorithm considering that the current value of the multiplier can apply sufficient
pressure to improve the constraint satisfaction. Increasing the multiplier further
can lead to a higher risk of overshoot.

2. Mode B Consider the cases in which infeasibility increases (et ≥ ξt−1), or we
suddenly become (sufficiently) strictly feasible et ≤ ψξt−1 ≤ 0. These cases
induce frictioned updates with the same sign as GA, but of smaller magnitude.
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Figure D.1: Comparing the update of νPI relative to GA, for different hyper-parameter config-
urations of νPI. Left: νPI is configured to recover Polyak (β = −0.4). Updates
exhibit dampening similar to that of νPI (ν = 0, κp = 1, κi = 1). Middle: νPI
(ν = 0, κp = 1, κi = 1) corresponding to a PI controller. νPI increases the
multipliers faster than GA when the constraint violation is large, enhancing con-
vergence speed; and proactively decreases them near the feasible set, preventing
overshoot. Right: νPI is configured to recover Polyak (β = 0.4). We observe an
increased eagerness to increase the multipliers as progress toward feasibility occurs.
This increases the chances of overshoot and subsequent oscillations. The blue, yellow,
and red regions correspond to cases in which the updates performed by the νPI algorithm
are faster, slower, or in the opposite direction than those of GA, respectively. This plot illus-
trates the case ξt−1 > 0. The middle and right figures presented here are the same as those in
Fig. 10.5. We include them here for the reader’s convenience.

3. Mode C When the primal player is feasible, positive momentum would result in
an increase of themultiplier; going against the update of GA, whichwould decrease
the multiplier. In this context, increasing the multiplier is unreasonable since the
current value of the multiplier is already sufficient to achieve feasibility.

Ablation on the influence of κp. Appx. D.3 presents three configurations of κp for
a νPI (ν = 0, κp, κi = 1) optimizer. We display κp at 0.2, 0.7 and 1.3, respectively.
As κp → 0, νPI is equivalent to GA. This is confirmed by the relative updates between
νPI and GA converging to a constant function 1. As κp increases in the middle and right
plots of Appx. D.3, the asymptote at 1/(1−ψ)moves further away from 1, and the width
of the “optimistic” region (Mode C) increases. In other words, as κp grows, the thresh-
old for “sufficient improvement” is relaxed and the optimizer is more prone to decrease
the multipliers upon improvements in constraint violation. This leads to a more “cau-
tious” behavior from the algorithm:icml2024: the multiplier is decreased earlier when
the problem approaches the feasible region, which prevents overshooting but with po-
tentially slower convergence. One can monotonically control for the convergence and
overshoot behaviors by adjusting the κp value, see Fig. 10.9.

d.4 analysis of continuous-time νpi dynamics as oscillator

In this section, we examine the spectral properties of the gradient-descent/νPI flow dy-
namics presented in Algo. 7. We extend the analysis of Stooke et al. [SAA20] (which
only considers the dynamics of x) to also consider λ.
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Figure D.2: Effect of κp in the update of νPI relative to GA. When κp approaches 0, νPI recov-
ers GA (a constant function 1 for the relative update). A larger κp leads to a wider
“optimistic” region (in red) where νPI decreases the multiplier to prevent over-
shooting despite the constraint being violated. We use κi = 1 and ν = 0 and κp of 0.2,
0.7 and 1.3, respectively.

Consider a constrained optimizationproblemwith equality constraintsh. TheGD/νPI
flow corresponds to a continuous-time dynamical system in which the primal player im-
plements gradient descent on the Lagrangian, and the dual player implements νPI ascent.
This is formalized in Algo. 7.

Algorithm 7 Continuous-time gradient descent/νPI

Args: proportional (κp) and integral (κi) gains for νPI flow
1: ẋ = −∇f(x)− Jh(x)µ
2: µ̇ = κih(x) + κpḣ(x)

Thm. D.4.1 characterizes the GD/νPI flow in Algo. 7 in terms of a second-order dy-
namical system. Note that this relationship holds for any constrained problemwhere the
objective and constraints have second derivatives. Appx. D.4.2 analyzes the resulting dy-
namical system for a quadratic program with linear equality constraints.

d.4.1 Oscillator dynamics of GD/νPI flow

Theorem D.4.1 The dynamics of Algo. 7 can be characterized by the following system
of second-order differential equations, with initial conditions x(0) = x0, µ(0) = µ0,
ẋ(0) = −∇f(x0)− Jh(x0)µ0, and µ̇(0) = κih(x0) + Jh(x0)ẋ(0):

ẍ = −

(
∇2f +

∑
c′

µc′∇2hc′

)
︸ ︷︷ ︸

Φ

ẋ− Jhµ̇ (D.27a)

µ̈ = κiJh⊤ẋ+ κpJh⊤ẍ+ κpΞ (D.27b)

where Ξ =
[
ẋ⊤∇2h1ẋ, . . . , ẋ

⊤∇2hcẋ
]⊤ ∈ Rc.

183



Constrained Optimization for Machine Learning

This can be concisely represented in matrix form as:[
In×n 0n×c

−κpJh⊤ Ic×c

][
ẍ

µ̈

]
+

[
Φ Jh

−κiJh⊤ 0c×c

][
ẋ

µ̇

]
+

[
0

−βΞ

]
= 0. (D.28)

Or, equivalently:[
ẍ

µ̈

]
+

[
Φ Jh

Jh⊤ (κpΦ− κiI) κpJh⊤Jh

][
ẋ

µ̇

]
+

[
0

−βΞ

]
= 0. (D.29)

Proof (Thm. D.4.1) We start by computing the time derivatives of the objective gradient
and constraint Jacobian:

d

dt
[∇f ] =

∑
j

∂(∇f)
∂xj

dxj
dt


i

= ∇2f ẋ (D.30)

d

dt
[Jh] =

[
∇2h1ẋ ∇2h2ẋ . . . ∇2hCẋ

]
(D.31)

Therefore, the second order dynamics for x are given by:

ẍ =
d

dt
[−∇f(x)− Jh(x)µ] = − d

dt
[∇f ]− Jhµ̇− d

dt
[Jh]µ (D.32a)

= −∇2f ẋ− Jhµ̇−
∑
c′

µc′∇2hc′ẋ (D.32b)

= −

(
∇2f +

∑
c′

µc′∇2hc′

)
︸ ︷︷ ︸

Φ

ẋ− Jhµ̇ (D.32c)

The second order dynamics for µ are given by:

µ̈ =
d

dt

[
κih+ κpJh⊤ẋ

]
= αḣ+ κpΞẋ+ κpJh⊤ẍ, (D.33)

where Ξ is defined as:

Ξ ≜ d

dt

[
Jh⊤

]
ẋ =

[
ẋ⊤∇2h1ẋ ẋ⊤∇2h2ẋ . . . ẋ∇2hcẋ

]⊤
. (D.34)

d.4.2 Dynamics of GD/νPI flow for a constrained quadratic program

Let H ∈ Rn×n be positive semi-definite and consider the convex quadratic program
with c linear constraints:

min
x

1

2
x⊤Hx+ c⊤x subject to Ax− b = 0. (D.35)
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The Lagrangian min-max game associated with the problem in Eq. (D.35) is given by:

L(x,µ) =
1

2
x⊤Hx+c⊤x+µ⊤(Ax−b) = 1

2
x⊤Hx+c⊤x+µ⊤Ax−µ⊤b. (D.36)

The linearity of the constraints in Eq. (D.35) implies Jh = A⊤ and ∇2gc′ = 0 for
c′ ∈ [c], thus Φ = H and Ξ = 0. Therefore, we obtain a homogeneous system of
second-order differential equations with constant coefficients:[

ẍ

µ̈

]
+

[
H A⊤

A (κpH − κiI) κpAA⊤

]
︸ ︷︷ ︸

U

[
ẋ

µ̇

]
= 0. (D.37)

A simple state transformation z = [x,µ, ẋ, µ̇]⊤ and ż = [ẋ, µ̇, ẍ, µ̈]⊤ yields:

ż = −

[
0 I
0 U

]
z = −

0(n+c)×(n+c) I(n+c)×(n+c)

0(n+c)×(n+c)

[
H A⊤

A (κpH − κiI) κpAA⊤

] z (D.38)

Therefore, this 2(n + c)-dimensional linear system has zero as an eigenvalue with alge-
braic multiplicity n + c, and the remaining eigenvalues correspond to the spectrum of
−U .

When the matrix H is zero, we recover the smooth bilinear games considered by
Gidel et al. [Gid+19a, Eq. 18] in their study of negative momentum. In this case, the
matrix U looks like:

−U = −

[
0 A⊤

−κiA κpAA⊤

]
(D.39)

It is easy to see that large enough values of κp cause the eigenvalues of the matrix to have
negative real parts, and thusmake the system converge. However, if κp = 0 (i.e. gradient
descent-ascent), the eigenvalues of this matrix are either 0 or pure imaginary. This fact is
in line with existing results in the literature on the lack of convergence gradient descent-
ascent on bilinear games [Gid+19a].

Case of one-variable and one constraint. It is instructive to analyze the spectrum of
U in the case of a problemwith a one-dimensional primal variable and a single constraint
(and thus one multiplier). In this case, U and its eigenvalues take the form:

−U = −

[
h a

a (κph− κi) κpa
2

]
(D.40)

λ =
−
(
h+ κpa

2
)
±
√
(h+ κpa2)

2 − 4a2κi

2
(D.41)

As before, the eigenvalues of this matrix depend on the choice of κp. This is illustrated
in Fig. D.3.
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Figure D.3: Eigenvalues for Eq. (D.35) as a function ofκp in the one-dimensional case. Apositive
value of κp (denoted by ⋆) achieves critical damping (i.e. equal convergence rate
for both dimensions). This plot uses h = 1, a = −1 and κi = 1.

Note that when the discriminant of Eq. (D.41) is zero, both eigenvalues match (and
must thus be real). When this occurs and both eigenvalues are negative, the system
converges and does so at the same rate in both dimensions. This is akin to the notion of
critical damping from the control theory literature.

The values of κp that make the discriminant zero are κ∗p =
−h±2|a|√κi

a2
, leading to the

eigenvalues λ(κ∗p) =
−(h+κ∗pa2)

2 = ∓a√κi. These values of κ∗p aremarked with ⋆ and×
in Fig. D.3. Note that out of the two values of κp producing matching eigenvalues, only
the choice κ∗p > 0 yields a convergent system.

More generally, depending on κp, the system exhibits different behaviors:

• Divergence. In the red regions, the system diverges; in light red region, this hap-
pens together with oscillations. Note how all the divergent configurations use a
negative value of κp. The fuchsia cross (×) denotes the value of κp for which both
dimensions diverge at the same rate.

• Underdamping. In the yellow region, the system is underdamped and converges
with oscillations. Interestingly, this system admits some negative values of κp (of
sufficiently small magnitude) while remaining convergent.

• Critical damping. The fuchsia star (⋆) shows the κp value that makes both di-
mensions of the system converge at the same rate. Note that this critical damping
regime is achieved at a strictly positive value of κp, and thus is not achievable by
gradient ascent.

• Overdamping. In the blue region, the system is convergent without oscillations but
overdamped since the dimension corresponding to the black eigenvalue converges
more slowly.
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d.5 illustrative 2d nonconvex problem

We demonstrate the behavior of νPI on the two-dimensional, nonconvex, equality-con-
strained problem in Eq. (D.42). This problem was proposed by Boyd [Boy21]. The set-
ting is simple enough to allow for visualizing the optimization paths of each optimization
variable and multiplier, while also being challenging due to nonconvexity.

min
x=(x1,x2)

f(x) ≜
∥∥∥∥∥
[
x1 + e−x2

x21 + 2x2 + 1

]∥∥∥∥∥
2

2

s.t. h(x) ≜ x1+x
3
1+x2+x

2
2 = 2 (D.42)

GA trajectories. In Fig. D.4, GA trajectories are initially drawn toward the direction of
the unconstrained optimum sincemultipliers grow slowly at first. As training progresses,
the constraint plays amore significant role. With a step-size that is too small (α = 0.005),
the trajectory does not converge to the global optimum. In contrast, the system reaches
the global constrained optimum point when employing a larger step-size (α = 0.01).
This is achieved while incurring in oscillations. The phase change from not converging
with a small step-size, to converging with oscillations indicates that GA is not suitable
for obtaining critical damping when solving the problem.
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Figure D.4: Optimization trajectories for different algorithms on a 2D nonconvex equality-
constrained minimization problem. νPI runs use ν = 0 and κi = 0.01. The light gray
⋆marks the unconstrained optimum, while the black ⋆marks the constrained optimum. Level
sets correspond to the objective function (solid) and constraint (dashed).

νPI trajectories. The three blue trajectories in Fig. D.4 show different behaviors of
νPI: underdamping (light blue, κp = 1), almost-critical damping (κp = 3) and over-
damping (dark blue, κp = 5). Note the monotonic effect of κp on the damping of the
system. νPI provides the flexibility to obtain different levels of constraint overshoot, and
can achieve feasibility and convergence at different speeds. This added flexibility leads
to enhanced control over the dynamics of the system relative to GA, thus enabling appli-
cations of νPI to safety-sensitive tasks.

Ablation on ν. In Fig. D.5, we zoom in on the effect of ν for fixed choices of κp and
κi. A ν closer to 0 tends towards PI, whereas a ν closer to one gives more importance to
historical constraint violations. We observe that a larger ν behaves qualitatively similar
to positive momentum: the multiplier tends to increase faster if the constraint is not
satisfied for a period of time. In this example, this leads to oscillations as shown for
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Figure D.5: Optimization trajectories for theνPI algorithmunder different choices of ν. νPI runs
use κi = 0.01 and κp = 10.

ν = 0.95. Since this problem is deterministic, using a non-zero ν does not show any
advantage. Our fairness experiments showcase an application where ν > 0 is beneficial.

d.6 experimental details

Our implementation use PyTorch 2.0.0 [Pas+19] and the Cooper library for Lagrangian
constrained optimization [Gal+24].

d.6.1 SVM experiments

In our experiment with the SVM task, we focus on two linearly separable classes from
the Iris dataset [Fis88]. We select 100 instances from the Iris setosa and Iris versicolor
species, which are two linearly separable classes in this dataset. Each data point in this
dataset has four features. We selected 70% of data for training and the rest for validation.
This gives the algorithm 70 Lagrange multipliers to learn.

We know that a unique λ∗ exists in our experiments. The linearly independent con-
straint qualification (LICQ) holds for the selected data, so the Karush-Kuhn-Tucker
(KKT) conditions imply the existence and uniqueness of λ∗. All of the methods that
do not diverge achieve perfect training and validation accuracy in this task.

Experiment configurationandhyperparameters. Throughout all of the experiments,
we fixed the primal optimizer and only changed the dual optimizer. The primal opti-
mizer is gradient descent with momentum, with step size 10−3 and momentum 0.9.

Different values of the parameter ν in νPI algorithm. We examine how changing
the parameter ν in the Algo. 3 can affect the convergence of the SVM task with different
choices of κi and κp. Fig. D.6 shows how νPI behaves when choosing a negative, zero
and positive value of ν. While ν = −0.5 can lead to a converging algorithm for some
step-sizes, ν = 0.0 offers a wider range of converging step-sizes. There is no choice of
step-size for which the νPI algorithm with a positive value of ν = 0.9 converges to λ∗.

Relationship between momentum and νPI algorithms. Thm. 10.4.1 indicates that
the Polyak and Nesterov momentum algorithms can be instantiated using a specific
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Figure D.6: Distance to optimal Lagrangemultipliers for different selections of parameter ν in the
νPI algorithm in the hard-margin SVM task. We also show where the equivalent κp
and κi parameters for Nesterov (α, β = ν) and Polyak (α, β = ν) lie according
to Thm. 10.4.1 for different values of α. The νPI algorithm with ν = 0 can give
the highest number of converging step-sizes. While negative ν = 0.5 induces a
range of converging step-sizes as well, there is no value of κi that the algorithm
converges for ν = 0.9. The gray color shows the runs exceeding a distance of 103 to λ∗.

choice ofκi andκp in theAlgo. 3. In Fig.D.6we showwhere Polyak (α, β) andNesterov
(α, β) lie for a choice of αs and with β = ν. For each pair of (αi, β) we calculate the
value of κi and κp according to Thm. 10.4.1.

• When β = ν = 0 there is no momentum. Thus all of the dots indicating momen-
tum methods lie in the κp = 0 line which corresponds to gradient ascent.

• A positive β = ν = 0.9 corresponds to the default choice of momentum in single-
objective minimization. We see that there is no step-size value for which Polyak
or Nesterov converge in this task. This observation supports the claims made by
Gidel et al. [Gid+19a] on the ineffectiveness of positive momentum in games.

• With a negative value β = ν = −0.5, there exist step-size choices leading to
convergence. However, these regions do not overlap with the locations realizable
via Polyak and Nesterov momentum.

Another observation from this plot is that, with negative momentum, Polyak re-
sults in a positive κp whileNesterov cannot. This further supports the experimen-
tal results of [Gid+19a], where Polyak method is used when they want to experi-
ment with negative momentum. Our hypothesis is that negative momentum with
Polyak is successful in games because it can induce a positive κp.

d.6.2 Sparsity experiments

Background. Louizos et al. [LWK18] propose a re-parameterization of models that al-
lows applying L0-norm regularization on their weights. They propose the use of stochas-
tic gates z that indicate whether each parameter is active or not, where z follows a hard-
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concrete distribution parameterized by ϕ. Employing the re-parameterization trick al-
lows the computation of gradients of the L0-norm of the model with respect to ϕ.

Gallego-Posada et al. [Gal+22] formulate a constrained optimization problem that
prescribes the desired sparsity of the model as a constraint.

min
w,ϕ∈Rd

Ez|ϕ [L(w � z | D)] s.t.
Ez|ϕ[‖z‖0]

#(w)
≤ ϵ, (D.43)

where x are the parameters of the model, L is an ERM objective, andD is a dataset. The
constraint is normalized with the total number of parameters of the model #(·), so that
the constraint level ϵ ∈ [0, 1] corresponds to the maximum allowed proportion of active
parameters. For details on the re-parameterization, and a closed form expression for
Ez|ϕ[‖z‖0], see Louizos et al. [LWK18] and Gallego-Posada et al. [Gal+22].

Hard-concretedistribution. TheL0-norm re-parameterizationproposed byLouizos
et al. [LWK18] considers a hard-concrete distribution for the stochastic gates of the
model. The hard-concrete distribution is based on a stretched and clamped concrete
distribution [MMT17]. Similar to Louizos et al. [LWK18] and Gallego-Posada et al.
[Gal+22], we choose a temperature of 2/3 for the concrete distribution, and a stretching
interval of [−0.1, 1.1].

Architecture. We consider ResNet-18 [He+16] models with basic residual blocks
for our sparsity experiments, which have a total of approximately 11.2 million parame-
ters. Following Louizos et al. [LWK18] and Gallego-Posada et al. [Gal+22], we em-
ploy output feature map sparsity on the first convolutional layer of each residual block,
whereas the following convolutional layer and the residual connection are kept to be fully
dense. The first convolutional layer of the model and the linear output layer are also kept
fully dense. This model counts with 8 sparsifiable convolutional layers.

Choice of sparsity levels. Although Gallego-Posada et al. [Gal+22] consider up
to 80% structured sparsity (20% density) for ResNet-18 models, Gale et al. [GEH19]
indicate that it is possible to train ResNet-50 models with structured sparsity of up to
95% (5% density or less), without incurring on a catastrophic loss on model accuracy.
Therefore, we consider sparsity levels of between 30% and 90% (70% and 10% density,
respectively).

Primal optimization. We consider an optimization pipeline for the model that in-
corporates standard techniques used to train L0-sparse ResNet-18 models on CIFAR10.
For the weights of the model, we use SGD with a momentum of 0.9, an initial learning
rate of 0.01, and a cosine annealing learning rate scheduler [LH17].

We initialize the gates with a droprate init of 0.01, effectively yielding a fully dense
model at initialization. Akin to Gallego-Posada et al. [Gal+22], we use Adam [KB15]
with a step-size of 8 · 10−4 to optimize the ϕ parameters of the stochastic gates. When
applying L2-norm regularization on the parameters, we detach the contribution of the
gates as recommended by Gallego-Posada et al. [Gal+22].

Dual optimization. For sparsity experiments, we consider ν = 0. Since the con-
straint is deterministic given the state of the model (it does not need to be estimated
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from mini-batches), we consider the use of an EMA to not be crucial for this task. Un-
less otherwise stated, we use a dual step-size of 8 ·10−4 for all dual optimizer choices (as
was provided by Gallego-Posada et al. [Gal+22]). We decide against tuning the dual
step-size separately for each optimizer to highlight the flexibility of νPI: given a step-size
that was tuned to yield good results for GA, νPI may produce better-behaved dynamics.

All of our sparsity experiments use a batch size of 128 and are over 200 epochs.

d.6.3 Fairness experiments

Dataset. In this experiment we consider the adult dataset [BK96], pre-processed follow-
ing Zafar et al. [Zaf+19]. The raw data comprises eight categorical and six continuous
attributes. After processing, the data is comprised of 50-dimensional sparse feature vec-
tors. The train and test sets consist of 30.162 and 15.060 samples, respectively.

Background. Weconsider a fairness task under the disparate impact constraint [Zaf+19]
shown in Eq. (10.13). This constraint is also known as statistical parity and demographic
parity [10.1145/3097983.3098095; 10.1145/2090236.2090255]. We consider two sen-
sitive attributes in the adult dataset: sex, denoted as A1 = {male, female}, and race, de-
noted asA2 = {White, Black, Asian-Pac-Islander, Amer-Indian-Eskimo, Other}. Eq. (10.13)
entails the intersection of both attributes, leading to |A1| × |A2| = 10 constraints.

Architecture and primal optimization. We train a 2-hidden-layer neural network
with hidden sizes of (100, 100) similar to the experimental setup ofCotter et al. [Cot+19b].
In order to choose the primal optimizer hyperparamters, we trained the unconstrained
problem and chose the parameters of the run with the highest training accuracy. We
fixed this primal optimizer across our constrained experiments to beAdam (α = 1e−2).

Dual optimization. We chose the best step-size for GA aimed at minimizing training
accuracy, while ensuring that the maximum violation achieves the lowest possible value.
This lead to a dual step-size of α = 0.03. We then fixed this value as the κi parame-
ter of νPI and ran a grid search to find the best κp. The grid search for κp considered
(logarithmically spaced) values in [0.01, 100]. The best results were found with κp = 5.

Due to the noise in the constraints, we also experimented with the effect of ν on the
optimization dynamics. We tried ν values of 0.0, 0.5, 0.9, 0.95, and 0.99. We noticed that
higher values of ν can improve the learning dynamics, with the best results achieved
at 0.99. Setting ν = 0 results in noisy Lagrange multipliers, which lead to unstable
optimization. This is illustrated in Fig. 10.7.

d.7 comprehensive results on the sparsity task

In this section we provide extensive experiment results for our sparsity experiments,
complementing §10.5.3. We conducted experiments with global and layer-wise sparsity
targets, at ϵ = 70%, 50%, 30%, 10% density levels. The shaded region of our plots cor-
responds to the feasible set. “Relative violations” are computed by dividing the absolute
constraint violations by the target density.
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d.7.1 Global

For global sparsity experiments (Figs. D.7 to D.10 and Tables D.2 to D.5), we observe
a general trend for models that overshoot into becoming more sparse to achieve lower
training performance. This insight is also generally true for validation accuracy, but not
necessarily so. In particular, gradient ascent and momentum methods consistently ex-
hibit overshoot, whereas νPI and gradient ascent with dual restarts do not overshoot
and achieve good performance. Dual restarts generally produce (slightly) infeasible so-
lutions. Note that at ϵ = 10%, negative momentum runs do not overshoot, but positive
momentum runs do.
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Figure D.7: CIFAR10 trade-off plot for global sparsity under a 70% density target. νPI success-
fully achieves the desired sparsity while achieving the highest train accuracy. The
shaded region is the feasible set. As higher density correlates to higher train accuracy, over-
shooting to a lower density is undesirable. All optimizers use the same step-size. This figure is
the same as Fig. 10.8. We repeat it here for the reader’s convenience.

Table D.2: CIFAR10 results for global sparsity under a 70% density target. νPI successfully
achieves the desired sparsity while achieving the highest train accuracy. The re-
sults in this table correspond to those in Fig. D.7. As higher density correlates to higher train
accuracy, overshooting to a lower density is undesirable. All optimizers use the same step-size.

Method Train Acc. Test Acc. Violation Relative Violation

Polyak β = −0.5 98.1± 0.06 88.2± 0.30 -13.8± 0.09 -19.7± 0.13
Polyak β = −0.3 98.1± 0.09 88.2± 0.32 -13.5± 0.43 -19.3± 0.61
Polyak β = 0.3 98.0± 0.04 88.1± 0.22 -11.4± 0.39 -16.3± 0.55
GA 98.0± 0.11 88.2± 0.43 -12.6± 0.48 -18.0± 0.69
GA + Dual Restarts 98.2± 0.01 88.3± 0.31 1.4± 0.07 2.0± 0.10
Ours - νPI κp = 9.6 98.3± 0.09 88.5± 0.20 0.1± 0.01 0.1± 0.02
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Figure D.8: CIFAR10 trade-off plot for global sparsity under a 50% density target.
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Figure D.9: CIFAR10 trade-off plot for global sparsity under a 30% density target.

Table D.3: CIFAR10 results for global sparsity under a 50% density target. The results in this table
correspond to those in Fig. D.8.

Method Train Acc. Test Acc. Violation Relative Violation

Polyak β = −0.5 97.2± 0.15 87.8± 0.26 -17.0± 0.17 -34.0± 0.34
Polyak β = −0.3 97.1± 0.11 87.4± 0.36 -17.1± 0.33 -34.2± 0.66
Polyak β = 0.3 97.0± 0.04 87.6± 0.17 -16.0± 0.59 -32.1± 1.18
GA 97.0± 0.10 87.9± 0.18 -17.0± 0.36 -33.9± 0.72
GA + Dual Restarts 97.9± 0.07 88.3± 0.36 2.0± 0.09 3.9± 0.18
Ours - νPI κp = 9.6 98.0± 0.09 88.1± 0.35 0.2± 0.03 0.3± 0.05
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Figure D.10: CIFAR10 trade-off plot for global sparsity under a 10% density target.

Table D.4: CIFAR10 results for global sparsity under a 30% density target. The results in this table
correspond to those in Fig. D.9.

Method Train Acc. Test Acc. Violation Relative Violation

Polyak β = −0.5 96.2± 0.07 87.4± 0.39 -13.8± 0.13 -45.9± 0.43
Polyak β = −0.3 96.1± 0.11 86.5± 0.57 -13.8± 0.11 -45.9± 0.36
Polyak β = 0.3 95.8± 0.13 86.4± 0.26 -13.8± 0.09 -46.0± 0.31
GA 95.9± 0.11 86.4± 0.52 -13.9± 0.11 -46.3± 0.36
GA + Dual Restarts 97.0± 0.11 87.6± 0.26 1.3± 0.22 4.4± 0.73
Ours - νPI κp = 14.4 97.4± 0.08 87.4± 0.27 -0.2± 0.11 -0.7± 0.38

Table D.5: CIFAR10 results for global sparsity under a 10% density target. The results in this table
correspond to those in Fig. D.10.

Method Train Acc. Test Acc. Violation Relative Violation

Polyak β = −0.5 94.6± 0.17 85.2± 0.93 0.7± 0.13 7.0± 1.31
Polyak β = −0.3 94.3± 0.06 84.7± 0.71 0.2± 0.14 2.0± 1.39
Polyak β = 0.3 92.6± 0.10 81.9± 0.77 -2.1± 0.08 -21.4± 0.82
GA 93.8± 0.20 81.9± 2.68 -0.9± 0.09 -9.0± 0.93
GA + Dual Restarts 94.3± 0.08 85.5± 0.59 0.4± 0.03 3.5± 0.35
Ours - νPI κp = 1.6 94.1± 0.08 83.4± 1.83 -0.2± 0.14 -1.6± 1.44

d.7.2 Layer-wise

We perform layer-wise sparsity experiments with ϵ = 10%, 30%, 50%, 70% density tar-
gets (Table D.6). We observe a similar trend to that of global sparsity experiments: GA
and momentum methods overshoot, while νPI and dual restarts reliably achieve feasi-
ble solutions, with small levels of overshoot. Moreover, we observe a small range in the
value of the violations for νPI and dual restarts.
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Table D.6: CIFAR10 results for layer-wise sparsity under 70-10% density targets. As higher density
correlates to higher train accuracy, overshooting to a lower density is undesirable. All optimizers
use the same step-size.

70% Density
This table is the same as Table 10.1, repeated for the reader’s convenience.

Method Accuracy (%) Violation (%) Relative Violation
Train Test Min Max Range Min Max Range

Polyak β = −0.5 91.9± 0.18 83.6± 1.40 -26.5± 0.81 -7.9± 0.86 18.9± 1.31 -37.8± 1.15 -11.4± 1.22 27.0± 1.87
Polyak β = −0.3 92.1± 0.07 83.4± 1.44 -27.1± 0.73 -6.7± 0.38 20.6± 0.92 -38.8± 1.05 -9.6± 0.55 29.4± 1.31
Polyak β = 0.3 91.9± 0.20 82.5± 1.50 -26.3± 0.82 -2.3± 0.69 24.0± 0.88 -37.5± 1.17 -3.2± 0.99 34.3± 1.26
GA 92.0± 0.08 84.1± 1.97 -27.8± 0.49 -5.2± 0.39 22.0± 0.56 -39.6± 0.70 -7.4± 0.55 31.4± 0.80
GA + Dual Restarts 95.0± 0.22 85.3± 0.61 -0.0± 0.00 1.2± 0.28 1.2± 0.28 -0.0± 0.00 1.8± 0.40 1.8± 0.40
Ours - νPI κp = 8.0 95.1± 0.06 86.2± 0.46 -1.7± 0.27 0.1± 0.04 1.8± 0.29 -2.4± 0.38 0.2± 0.06 2.5± 0.42

50% Density

Method Accuracy (%) Violation (%) Relative Violation
Train Test Min Max Range Min Max Range

Polyak β = −0.5 87.5± 0.17 80.2± 2.65 -32.6± 0.95 -15.9± 0.80 16.4± 1.31 -65.1± 1.89 -31.7± 1.59 32.9± 2.61
Polyak β = −0.3 87.7± 0.21 80.3± 2.13 -29.5± 0.69 -15.4± 0.81 13.6± 1.23 -59.1± 1.38 -30.8± 1.62 27.2± 2.46
Polyak β = 0.3 87.4± 0.21 79.7± 3.18 -30.9± 0.66 -14.1± 0.25 16.9± 0.70 -61.8± 1.33 -28.3± 0.49 33.9± 1.40
GA 87.6± 0.12 77.5± 3.14 -29.7± 1.02 -14.2± 0.60 14.7± 1.15 -59.4± 2.04 -28.3± 1.20 29.4± 2.30
GA + Dual Restarts 92.8± 0.07 83.5± 0.81 -0.0± 0.01 1.0± 0.46 1.0± 0.46 -0.0± 0.02 1.9± 0.92 1.9± 0.93
Ours - νPI κp = 8.0 93.2± 0.06 83.6± 0.87 -1.5± 0.13 0.1± 0.08 1.6± 0.19 -2.9± 0.26 0.2± 0.16 3.2± 0.37

30% Density

Method Accuracy (%) Violation (%) Relative Violation
Train Test Min Max Range Min Max Range

Polyak β = −0.5 81.8± 0.19 63.5± 18.58 -25.2± 1.54 -17.0± 0.37 8.4± 1.73 -84.1± 5.12 -56.8± 1.23 28.0± 5.77
Polyak β = −0.3 82.1± 0.54 63.3± 8.65 -25.1± 1.15 -16.4± 0.38 8.7± 0.91 -83.5± 3.84 -54.7± 1.27 29.0± 3.04
Polyak β = 0.3 81.8± 0.32 72.7± 3.36 -25.1± 2.12 -17.5± 0.24 7.4± 2.12 -83.6± 7.07 -58.5± 0.79 24.8± 7.07
GA 81.8± 0.44 72.7± 4.40 -24.8± 1.11 -17.0± 0.60 8.5± 1.22 -82.5± 3.69 -56.7± 1.99 28.2± 4.07
GA + Dual Restarts 89.7± 0.23 82.9± 2.59 -0.0± 0.00 0.9± 0.33 0.9± 0.33 -0.0± 0.01 3.0± 1.10 3.0± 1.10
Ours - νPI κp = 12.0 89.8± 0.11 82.0± 2.45 -0.3± 0.13 0.3± 0.03 0.6± 0.12 -0.8± 0.42 1.0± 0.11 2.1± 0.39

10% Density

Method Accuracy (%) Violation (%) Relative Violation
Train Test Min Max Range Min Max Range

Polyak β = −0.5 71.3± 0.61 61.0± 9.50 -10.0± 0.14 -5.9± 0.47 4.0± 0.48 -100.0± 1.36 -58.7± 4.74 40.5± 4.83
Polyak β = −0.3 70.9± 0.60 49.5± 16.33 -10.0± 0.01 -5.9± 0.60 4.1± 0.60 -100.0± 0.11 -58.9± 5.97 41.1± 5.95
Polyak β = 0.3 69.2± 0.71 56.3± 15.05 -10.0± 0.02 -6.7± 0.06 3.3± 0.08 -100.0± 0.15 -67.3± 0.65 32.7± 0.79
GA 71.0± 0.32 49.6± 11.1 -10.0± 0.19 -6.1± 0.25 3.9± 0.42 -100.0± 1.91 -61.2± 2.54 38.8± 4.24
GA + Dual Restarts 83.1± 0.27 73.1± 4.87 -0.0± 0.00 1.6± 0.14 1.6± 0.14 -0.0± 0.02 16.1± 1.39 16.1± 1.40
Ours - νPI κp = 12.0 81.4± 0.39 42.8± 14.54 -1.9± 0.34 0.9± 0.46 3.2± 0.72 -19.1± 3.41 9.3± 4.62 31.7± 7.17
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d.8 additional experiments

In this section, we include additional experimental results on the sparsity-constrained
task. We analyze the dynamics of the multiplier throughout training, and conduct abla-
tion studies on κp for νPI, the momentum coefficients of Polyak and Nesterov, and the
step-size of Adam.

d.8.1 Dynamics

The dynamics shown in Fig. D.11 help understand the change of the constraint violation
and multipliers throughout the optimization process, as opposed to only measuring the
end-of-training values as in the previous section. We observe thatGA, Polyak, andAdam
quickly overshoot, but manage to regain some capacity as training progresses. This re-
covery is most notorious for Adam, whose multiplier decreases quickly enough to allow
for the sparsification to stop. Dual restarts reduce the value of the multiplier as soon as
feasibility is achieved, thus preventing an incursion of the constraint into the feasible set.
νPI produces well-behaved multipliers whose constraints are reasonably damped.
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Figure D.11: Dynamics plot for global sparsity under a 30% density target.

Note that for this sparsity task, it is reasonable to expect that the constraint should be
active at the constrained optimum, since more capacity in the model is likely to correlate
with better performance on the training objective. However, note that νPI is the only
method that provides a non-zero estimate of the Lagrange multiplier. In the following
experiment we showcase that this estimate yielded by νPI is remarkably useful.

0 50 100 150 200
Epoch

0

20

40

60

V
io

la
tio

n

Penalized λGA200 = 0 Penalized λ p = 16
200 = 0.75 Penalized λ p = 20

200 = 0.85

Figure D.12: Dynamics plot for global sparsity under a 30% density target.
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Fig. D.12 considers an unconstrained L0-regularization experiment. We use the final
value of the νPI (κp = 16) and νPI (κp = 20) as the (fixed) penalty coefficient for 200
epochs in the penalized formulation of the problem, akin to Louizos et al. [LWK18].
We also include an experiment using the multiplier estimate (equal to zero) from GA.

Unsurprisingly, the runwith theGAmultiplier estimate remains at 100%density, since
the penalty does not exert any influence during training. In contrast, the runs with the
νPI multiplier estimates not only achieve some sparsity, but are also very close to the
target density by the end of training. This is remarkable since the problemwe are solving
is nonconvex, and there might not even exist an optimal Lagrange multiplier value.

d.8.2 Ablation on the value of κp

In this section, we fix the dual step-size and ablate on the hyperparameter κp, at two
sparsity levels. The results are presented in Fig. D.13 and Tables D.7 and D.8.
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Figure D.13: Ablation on the density-accuracy trade-offs achievable by νPI under global density
targets of 50% (top) and 30% (bottom).

We see that a larger κp leads to more damping and less overshoot. Note that there is a
strong correlation between training accuracy and model density. Hence, it is important
to be able to control overshoot in sparsity constraints and take advantage of the maxi-
mum allowed density for the sake of accuracy. There is a range of κp that can achieve
such desired sparsity. The same trend roughly extends to validation accuracy (with some
caveats due to generalization errors).
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Table D.7: Ablation on the κp hyperparameter for a CIFAR10 task with a global density target of
ϵ = 50%. κp monotonically controls the degree of damping and constraint over-
shoot.

νPI κp Train Acc. Test Acc. Violation Relative Violation

0 97.0± 0.10 87.9± 0.18 -17.0± 0.36 -33.9± 0.72
0.008 97.1± 0.06 87.4± 0.23 -16.6± 0.14 -33.2± 0.28
0.08 97.0± 0.09 87.7± 0.29 -16.2± 0.42 -32.4± 0.84
0.8 97.3± 0.07 87.7± 0.19 -13.8± 0.13 -27.5± 0.27
4 97.8± 0.10 88.1± 0.28 -3.3± 0.23 -6.5± 0.46
8 97.9± 0.06 88.2± 0.39 0.4± 0.03 0.9± 0.06
9.6 98.1± 0.07 88.1± 0.18 0.1± 0.02 0.2± 0.04
12 98.0± 0.05 87.7± 0.14 0.1± 0.01 0.2± 0.03
14.4 98.0± 0.08 88.2± 0.17 0.4± 0.02 0.7± 0.05
16 98.1± 0.02 88.3± 0.28 0.7± 0.02 1.5± 0.04
20 98.1± 0.05 87.9± 0.31 2.0± 0.03 4.0± 0.07
24 98.1± 0.05 88.3± 0.15 3.6± 0.03 7.2± 0.06

Table D.8: Ablation on the κp hyperparameter for a CIFAR10 task with a global density target of
ϵ = 30%.

νPI κp Train Acc. Test Acc. Violation Relative Violation

0 95.9± 0.11 86.4± 0.52 -13.9± 0.11 -46.3± 0.36
0.008 96.0± 0.08 86.4± 0.27 -13.7± 0.13 -45.7± 0.43
0.08 95.9± 0.10 86.9± 0.25 -13.7± 0.18 -45.6± 0.59
0.8 96.1± 0.07 87.2± 0.35 -13.1± 0.13 -43.6± 0.45
4 96.4± 0.17 87.2± 0.62 -8.7± 0.16 -28.9± 0.54
8 96.9± 0.10 87.6± 0.33 -4.0± 0.10 -13.3± 0.32
9.6 97.1± 0.12 87.5± 0.45 -3.0± 0.18 -10.1± 0.60
12 97.3± 0.04 87.5± 0.28 -1.6± 0.11 -5.3± 0.37
14.4 97.4± 0.08 87.4± 0.27 -0.2± 0.11 -0.7± 0.38
16 97.5± 0.11 87.9± 0.32 0.8± 0.17 2.8± 0.57
20 97.6± 0.12 88.1± 0.38 3.3± 0.11 10.9± 0.36
24 97.8± 0.06 87.9± 0.41 5.7± 0.11 19.0± 0.36
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d.8.3 Adam

Wealso experimentedwith a range of learning choices forAdam to explore their effect on
constraint satisfaction and overshoot. The results are shown in Fig. D.14, and Table D.9.
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Figure D.14: Ablation on the density-accuracy trade-offs achievable by Adam under global den-
sity targets of 50% (top) and 30% (bottom).

Table D.9: Ablation on the step-size hyperparameter for Adam on a CIFAR10 task with a global
density targets of ϵ = 50% and ϵ = 30%.

50% Density

Adam η Train Acc. Test Acc. Violation

1·10−5 98.52 88.17 2.02
8·10−5 97.97 88.62 -7.30
1·10−4 97.81 88.32 -6.70
8·10−4 97.36 87.68 -0.99
1·10−3 97.23 87.49 -0.08
8·10−3 95.52 86.65 0.04
1·10−2 95.25 85.89 0.01
8·10−2 90.45 77.04 -0.02

30% Density

Adam η Train Acc. Test Acc. Violation

1·10−5 98.52 88.17 2.02
8·10−5 97.97 88.62 -7.30
1·10−4 97.81 88.32 -6.70
8·10−4 97.36 87.68 -0.99
1·10−3 97.23 87.49 -0.08
8·10−3 95.52 86.65 0.04
1·10−2 95.25 85.89 0.01
8·10−2 90.45 77.04 -0.02
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We observe that the influence of Adam’s learning on the constraint overshoot is not
monotonic. When the step-size is too small, Adam does not satisfy the constraint. As
the step-size increases, it begins to overshoot into the feasible region. There is a range
of larger step-sizes that lie at the sweet spot of almost exact constraint satisfaction, right
before the step-size is too large and then overshoot happens again.

The sensitivity and non-monotonicity of the step-size make the tuning of the step-size
hyperparameter for Adam challenging. Note that we restricted our experiments to the
default EMA coefficients for Adam following PyTorch: β1 = 0.9 and β2 = 0.999.

d.8.4 Momentum

We carried out similar ablations on the momentum coefficient of Polyak and Nesterov,
using both positive and negative values. The results are shown in Fig. D.15, and Ta-
bles D.10 and D.11. We observe significant overshoot into the feasible region for all
attempted values, compared to the desired target density of 30%.
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Figure D.15: Trade-off plot under a 30% global density target for Nesterov (top) and Polyak
(bottom) momentum.

200



D Appendix to the Fourth Contribution

Table D.10: Ablation on the momentum hyperparameter for Nesterov on a CIFAR10 task with
a global density target of ϵ = 30%.

Nesterov β Train Acc. Test Acc. Violation

-0.9 96.21 87.28 -13.36
-0.7 96.19 87.23 -13.67
-0.5 96.01 86.93 -13.93
-0.3 96.16 86.75 -13.71
-0.1 95.95 86.15 -13.88
0.0 95.79 86.42 -13.78
0.1 95.84 86.47 -14.05
0.3 95.79 86.61 -13.64
0.5 95.75 86.72 -14.02
0.7 95.39 86.69 -14.44
0.9 94.04 84.89 -17.20

Table D.11: Ablation on the momentum hyperparameter for Polyak on a CIFAR10 task with a
global density target of ϵ = 30%.

Polyak β Train Acc. Test Acc. Violation

-0.9 96.21 87.64 -13.36
-0.7 96.31 87.29 -13.71
-0.5 96.13 87.18 -13.82
-0.3 95.99 86.96 -14.10
-0.1 96.02 87.29 -13.50
0.0 95.79 86.42 -13.78
0.1 96.10 86.55 -14.21
0.3 95.72 86.52 -14.00
0.5 95.74 87.10 -14.03
0.7 95.46 85.81 -14.63
0.9 94.39 83.96 -17.02
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