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Abstract

Within representation learning and dimensionality reduction, there are two main
theoretical frameworks: probability and geometry. Unfortunately, there is a lack of a
formal definition of a statistical model in most geometry-based dimension reduction
works, which perpetuates the division.

We introduce a statistical model parameterized by geometric simplicial complexes,
which allows us to interpret the construction of an embedding proposed by UMAP
as an approximate maximum a posteriori estimator. This is a step towards a theory
of unsupervised learning which unifies geometric and probabilistic methods.

Finally, based on the the notion of structure preservation between simplicial com-
plexes we define Simplicial AutoEncoders. Along with the construction of a proba-
bilistic model for the codes in the latent space, Simplicial AutoEncoders provide a
parametric extension of UMAP to a generative model.
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Introduction

God created the integers, all the rest is the work
of man".

— Leopold Kronecker

The performance of machine learning algorithms is strongly influenced by the
representation of the data on which they are applied. A simple yet revealing example
of this is shown in Figure 1.1. The change of coordinate dramatically affects the
linear separability of this dataset. One could argue that the dataset is linearly
separable, just not in the original representation as two concentric circles.

(a) Dataset formed by two circles. (b) Same dataset in polar coordinates.

Fig. 1.1: A simple change of representation can drastically affect the performance of a
machine learning algorithm.

The immediate question is then, given a dataset, what is a good representation for it?
As it is clear from the example, the goodness of a representation is directly linked to
the type of algorithm we are applying on it: if our model was a radial basis function,
the circular representation could be more useful. Also, depending on the learning
task at hand, the preference of one representation over another might change.

In the last decade, feature engineering and the associated data preprocessing pipelines,
accounted for a large part of the effort in the deployment of machine learning
algorithms. During the early 2010s, a paradigm shift occurred. The focus went from
manufacturing features, to learning them. In the words of Bengio et al. ( ),
we want to learn "representations of the data that make it easier to extract useful
information when building classifiers or other predictors".
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Real world datasets arise from interactions between many sources. The interaction
between these components create entanglements, which in turn account for the
complexity present in datasets like audio, images or text. From a causality point
of view, a good representation would be one which successfully disentangles such
factors of variation.

At the same time, we would like our representation to distinguish and be equivariant
with respect to relevant features, as well as to remain unchanged under transfor-
mations in less fundamental aspects. From the conjunction of disentanglement and
invariance dimension reduction appears: “disentangle as many factors as possible,
discarding as little information about the data as is practical” (Bengio et al., ).

The idea of dimension reduction also has some physical justification. Real datasets
arise as the measurement (be it pictorial, sonorous, numeric, etc.) of variables in a
physical system. Lin et al. ( ) argue that the locality, symmetry and low-order
Hamiltonians characteristics of physical systems imply that the degrees of freedom
of such systems are usually fairly low.

The machine learning embodiment of this idea is the so-called manifold hypothesis,
according to which “real world data presented in high-dimensional spaces is likely to
concentrate in the vicinity of non-linear sub-manifolds of much lower dimensionality”
(Rifai et al., ). This means that we can gain insights about the probability
distribution in the high-dimensional space by studying the properties of those sub-
manifolds around which it concentrates.

As we will see later, simplicial complexes are geometric constructions which can be
represented combinatorially and which can be used to obtain reliable approximations
of smooth manifolds. The combinatorial structure of simplicial complexes makes
them much more amenable for computations than general smooth manifolds. For
these reason they will be our central object of study.

Within representation learning and dimensionality reduction, there are two main
theoretical frameworks: probability and geometry. Unfortunately, there is a lack of a
formal definition of a statistical model in most geometry-based dimension reduction
techniques, which perpetuates the division. Our construction of a statistical model
parameterized by simplicial complexes is an attempt to close this gap.

Among the most notable examples of probabilistic approaches to representation
learning we can count Probabilistic PCA (Tipping and Bishop, ), Variational
Autoencoders (VAEs) (Kingma and Welling, ) and Generative Adversarial Net-
works (GANs) (Goodfellow et al., ). An advantage of probabilistic approaches
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over probabilistic ones is that they naturally induce a generative model, from which
new data can be sampled.

Geometric methods can roughly be categorized as parametric or non-parametric.
Non-parametric methods usually involve the construction of a (nearest-neighbor)
graph and a random walk in the graph governed by some Markov chain. The most

prominent example is the state-of-the-art, tSNE (Maaten and Hinton, ).
On the other hand, methods such as Contractive (Rifai et al., ) or Denois-
ing autoencoders (Vincent et al., ) try to learn a representation by imposing

conditions such as robustness or smoothness on the a parametric embedding.

More recently, UMAP (McInnes and Healy, ) proposes a theoretical framework
for manifold learning based in Riemannian geometry and algebraic topology, which
is competitive with t-SNE. In short, it builds a non-parametric embedding of a
dataset by minimizing the difference between the fuzzy topological representation
of the data and the embedding. This work is the cornerstone in our theoretical and
practical developments.

The main contributions of this thesis are:

* An equivalence theorem between fuzzy sets and a class of non-increasing
set-valued random variables.

* A statistical model parameterized by geometric simplicial complexes.

* An interpretation of the UMAP algorithm as an approximate a posteriori
estimator over random simplicial complexes.

* The introduction of Simplicial AutoEncoders as a parametric extension of
UMAP and a principled generalization of mixup (Zhang et al., ).

* The extension of the representation induced by UMAP to a generative model.

This rest of this thesis is structured as follows. In Section 2 we provide a brief
overview of the mathematical theories involved in work: category theory, (algebraic)
topology, measure theory and fuzzy sets. In Section 3 we describe the theoretical
foundations and inner workings of UMAP; prove an equivalence theorem between
fuzzy sets and a special types of random variables; and use this result to interpret
UMAP as the solution of a maximum a posteriori problem. In Section 4 we introduce
the notions of simplicial regularization and simplicial autoencoders. Finally, Sections
5 and 6 contain our results and conclusions.






Mathematical Preliminaries

There is no royal road to geometry".

— Euclid
(when asked if there was a shorter road to
learning geometry than through the Elements)

In this chapter we provide a brief introduction to the several branches of mathematics
on which this thesis is based. The starting point is a brief overview of category theory.
We then define topological spaces, list some of their properties and illustrate how
manifolds and simplicial complexes arise as particular examples. Additionally, we
present (persistent) homology as a group-valued invariant on a topological space.
Using category-theoretic tools, we extend the notion of simplicial complexes and
introduce simplicial sets as their straightforward generalization. Finally, we describe
random variables and fuzzy sets, as well as clarify the notation and terminology
regarding deep generative networks.

2.1 Category Theory

Perhaps the most common theme in mathematics is that of studying classes of objects
by considering transformations which "preserve structure” between said objects.
Famous examples of this idea include sets and functions; vector spaces and linear
transformations; posets and order-preserving maps, groups and homomorphisms;
metric spaces and non-expansive maps; and topological spaces and continuous
transformations.

Given the broad range of topics which can be formalized under the language of
category theory, we provide a short introduction to its main concepts: categories,
functors and natural transformations. This initial effort will be compensated with a
general framework in which we can extend simplicial complexes to simplicial sets,
define fuzzy sets and describe the theory underlying UMAP.



A category C consists of:

* a class'of objects Ob(C),
* for every pair of objects ¢, d a set of morphisms Homc(c, d),

* a binary operation o, called composition of morphisms, such that for
every f € Homc(c,d) and g € Home(d, €), there is an element fo g €
Homc(c, e).

satisfying the following axioms:

» for all f € Homc(a,b), g € Homg(b,c¢) and h € Homc(c, d), we have
that ho(go f) =(hog)o f, and

* for every object ¢, there exists a morphism id. € Homc(c, ¢) such that for
every morphism f € Homc(c, d) and every morphism g € Homc(e, ¢)
we have f oid. = f and id. og = g.

Let us look at some concrete examples categories (see Figure 2.1):

* Any set be regarded as a category whose only morphisms are the identity
morphisms. Note that the conditions on composition are vacuously true. Such
categories are called discrete.

* For every directed graph we can construct a category, called the free category
generated by the graph. The objects are the vertices of the graph, and the
morphisms are the paths in the graph and where composition of morphisms is
concatenation of paths.

* A monoid is an algebraic structure with a single associative binary operation
and an identity element, e.g. (N, +,0). We can view any monoid as a category
with a single object x. Every element m in the monoid corresponds to a
morphism m : x — *, the identity morphism id, comes from the identity of the
monoid, and the composition of morphisms is given by the monoid operation.

A class is an expression of the type {z | ¢(x)}, where  is a formula with the free variable z.
Informally, a proper class is a collection of objects which is too large to be a set under a given
axiomatic set theory system, while a class that is a set is called a small class.
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In a slight abuse of notation we often declare an object as an element ¢ € C
rather than ¢ € Ob(C). Whenever the category can be inferred from the
context, we denote the morphisms from ¢ to d by Hom(c, d) and a generic
morphism by f : ¢ — d.

() (idc) @
® © i
< lda ) K/A'\ ld* )

(a) A discrete category (b) A directed graph (c) A monoid

Fig. 2.1: Set, graph and monoid viewed as categories.

The importance of the previous Definition 1 lies on its ability to accommodate plenty
of major mathematical constructions:

* The category Set has the class of all sets as objects together with all func-
tions between them as morphisms and usual function composition as the
composition of morphisms,

* Top is the category whose objects are topological spaces and whose morphisms
are continuous maps,

* The category Vectg has all vector spaces over a fixed field F as objects and
F-linear transformations as morphisms

* Man®™ is the category which has all smooth manifolds as objects and smooth
maps between them as morphisms.

* Given a category C, we can define the opposite or dual category C°P by keeping
the same set of objects and reversing the morphisms.

It is evident that a category constitutes a mathematical structure by itself. We
can start building a new level of abstraction by studying which kind of maps are
those which appropriately preserve structure between categories. Note how such
a construction would allows us to consider the category Cat which consists of all
small categories, and the structure-preserving maps between them as morphisms.
We have arrived at the notion of a functor.

2.1 Category Theory



Let C and D be categories. A functor F' from C to D consists of:

* amapping F' : Ob(C) — Ob(D), and

 forall ¢, € C, a mapping between Homc (¢, ¢') and Homp (F(c), F(c'))
such that the following conditions hold:

e for every object c € C, F(id.) = idp(),

e forevery f:c—d,g:d —¢inC, F(goc f) = F(g) op F(f).

With respect to a reference category C, a functor F' : C — D is called
covariant, while F' : C°P — D is called contravariant.

In other words, functors are the transformations between categories which preserve
identities and composition, see Figure 2.2.

Coc———F(c)eD
Home(c,d) 2 f F(f) € Homp(F(c), F(c'))

Csd——F([)eD

Fig. 2.2: Graphical representation of a functor.

Some examples of functors are in order:

* Ay : C — D is the constant functor which maps every object of C to a fixed
object d € D and every morphism in C to the identity morphism on d.

* The functor P : Set — Set maps a set to its power set and each function
f: X —>Ytothemap U — f(U) foreach U C X.

* The functor 7; : Top. — Grp maps a topological space with basepoint to its
fundamental group based at the given basepoint.

* Different categories are be capable of encoding different structural refinements,
and thus the application of a functor might cause information to be lost. For
example, the functor U : Grp — Set which maps a group to its underlying set
and a homomorphism to its underlying function of sets is a forgetful functor.

* The free functor F' : Set — Grp sends every set to the free group generated by
it and functions are associated to group homomorphisms between free groups.

Chapter 2 Mathematical Preliminaries



Let us recall what the development has been so far. We started by considering a
collection of mathematical objects (say the elements of a group) and translated
the information contained in their relations (existence of an identity, existence
of inverses, associativity, etc.) to construct a category. Then we realized how by
gathering together all similar collections of objects and considering the relations
between them (in terms of structure preservation) we could construct a new category
(in the running example, Grp). Taking this process one step further, the concept of
a natural transformation is revealed.

Let F' and G be functors between the categories C and D. A natural transfor-
mation « : F' — G is a family of morphisms {«.}.cc such that:

* for every object ¢ € C, a. : F(c) — G(c) is a choice of a morphism
between objects in D.

* for every morphism f : ¢ — ¢ in C, we have that ay o F(f) = G(f) o .

The last predicate in the previous definition is called the naturality condition. This
can be conveniently expressed by means of the commutative diagram in Figure 2.3.
Note that given functors as in the definition, a natural transformation might not exist.
This might occur if, for example, Homp (F'(c), G(c)) is empty for some ¢ € C.

F(f)
F(c) F(c)
G(c) G(d)
G(f)

Fig. 2.3: Commutative diagram expressing the naturality of a transformation.

Let us define the category [C, D], whose objects are functors from C to D and
whose morphisms are natural transformations between said functors. As we will see
later, a simplicial complex is a functor from the simplicial category A to Set, and
the structure preserving transformations, called simplicial mappings, correspond to
natural transformations between said functors. We have built a language in which
we can make sense of the statement: “the category of simplicial complexes SCx is
the category of functors[A, Set]”.

2.1 Category Theory



The central theoretical contribution of UMAP is the construction of two adjoint
functors which allow to “translate” back and forth between the categories of metric
spaces and fuzzy simplicial sets.

An adjunction between teo categories C and D consists of two functors
F : D — C and a natural isomorphism

® : Homc(F—, —) - Homp (—, G—).
This specifies a family of bijections
®., : Homg(Fd, ¢) - Homp(d, Ge),

for all objects c € C and d € D.
We say F' is left adjoint to G (resp., G is right adjoint to F) and write F' 4 G.

A common view of adjoint functors is related to the construction of “optimal solutions”
to certain problems. Let us illustrate this by means of an example. Consider the
following procedure for turning a set into S a group:

e letG =02.
* Forevery element s € S, add an element s—'. Now, we have G = { a,a™%,b,071,...}.

* Adjoin an special element ), called the empty word, which will act as the
group identity. At this stage, G = {\,a,a=1,b,071, ...}

* Define a pre-word to be any finite sequence of elements in G, i.e., the group
operation is concatenation of strings. A typical pre-word is abaa~'bbabcc™!.

» Extend the elements of GG to be all reduced pre-words, by removing expressions
of the form aa~! in every pre-word, and add the corresponding inverse word.

Note that we do not impose any relations between the elements of G which are not
forced by the axioms of a group. Intuitively, this the “most efficient” construction of
a group out of S. This is, of course, nothing but the free group generated by S we
introduced earlier. Similarly, the “most efficient” way to turn a group into a set is
by forgetting the group structure and returning the underlying set. Adjoint functors
are in a sense, “conceptual inverses” between categories. Pairs of free and forgetful
constructions are common examples of adjunctions.
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2.2 Topology

We have first mentioned the concept of a manifold as the standard term used to
describe regions of (usually) low dimensionality in the data space in which the
probability density is highly concentrated. In this section we display manifolds and
simplicial complexes as special types of topological spaces. We argue why simplicial
complexes are an adequate tool to approximate manifolds, and how a geometric
model based on simplicial complexes allows for greater generality.

Topological Spaces

Topology can be considered a qualitative study of shape. It is the analysis of those
properties of spaces which are preserved under “continuous” deformations, such as
stretching and bending, but not tearing or gluing. For instance, the surfaces of a disk
and square share many properties: they are both “two-dimensional” objects with no
“holes” and only “one piece", see Figure 2.4. It is the language of topology that will
let us drop the quotes.

Fig. 2.4: The surfaces of a disk and a square can be continuously deformed into each other.

A topological space is a tuple (X, ), where X is a set and 7 C 2%, satisfying
the following conditions:

* X and & belong to 7,
* 9 is closed under finite intersections,
* I is closed under arbitrary unions.

The elements of 7 are called open sets.

There are plenty of widely used examples of topological spaces:

* Any metric space (X, d) can be endowed with a topology which is generated
by the open balls B,(z) = {y € X | d(z,y) <r}.

2.2 Topology
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* The topology generated by the open balls on R™ with the Euclidean distance is
called the standard topology on R".

* Given a set S the collections {@, S} and 2% are topologies on S, called the
trivial and discrete topologies.

* Given a topological space (X, ) and a subset U of X, the collection given by
{UNO | O €T} isatopology on U.

Whenever the topology is clear from the context, we refer to X alone as a
topological space. Unless stated otherwise we consider every Euclidean space,
or any subset thereof, as endowed with the standard topology.

The vague notion of “stretching and bending, but not tearing or gluing” mentioned
earlier is formalized in the context of topological spaced by the central notion of
continuous transformations. We emphasize the fact that the continuity of a mapping
is directly related to the topologies chosen on both the domain and codomain. This
means that a morphism of sets f : X — Y can be continuous with respect to (X, %)
and (Y, 0;), but fail to be continuous with respect to a choice (X, %) and (Y, 03).

A mapping f : (X,7) — (Y,0) is called continuous if for every O € 0, the
preimage f~1(0) € 7.

It is easy to see that for functions on R", this definition of continuity is equivalent to
the standard “epsilon-delta” definition. However, Definition 6 allows us to see clearly
the way in which a continuous function induces a mapping between the collections
of open sets by sending O € 6 to f~}(O) € J. When this mapping between the
open sets is a bijection, we obtain an equivalence of topological spaces.

(a) A donut. (b) Still a donut.

Fig. 2.5: The surfaces of a donut and a mug are topologically equivalent.

Chapter 2 Mathematical Preliminaries



A mapping f : (X,7) — (Y,0) is called a homeomorphism if:
* f is continuous,
* f is bijective,
e the inverse function f~! is continuous.

We say two topological spaces (X,7) and (Y,6) are homeomorphic, i.e.,
topologically equivalent, if there exists a homeomorphism between them. We
denote this by (X,J) =7op (Y,0).

Homeomorphisms induce an equivalence class in the category of topological spaces,
and thus, as far as the topology is concerned, we might regard the surface of a
donut and that of a coffee mug to be identical, see Figure 2.5. Alternative ways to
categorize topological spaces are related to equivalence classes or groups of loops.
We proceed to define the first homotopy group, and postpone the definition of
homology groups to its simplicial version in the next section.

Simplicial Complexes

A geometric k-simplex in R™ is the convex set spanned by & + 1 geometrically
independent points {zy,...,zx}. The points z; are called vertices, and the
convex set spanned by any non-empty subset of these vertices is called a
face of the k-simplex. The standard geometric k-simplex, denoted A, is the
convex hull of the canonical basis of R™.

(] *——=0 A &
Fig. 2.6: Examples of simplices for dimensions zero to three.

As a subset of R™ we can endow a simplex with a topology induced from the ambient
space. In particular, it is easy to see that a k-simplex is homeomorphic to a k-ball, i.e.,

a filled k-sphere. This property is crucial for the results regarding the approximation
of surfaces using simplicial complexes.

2.2 Topology
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Throughout this text we consider all simplices to be ordered, i.e, we assume
that every set of vertices carries a total order. This implies that the symbol
[€ig, - .., 7] may stand for a simplex if and only if x;, < x; whenever j <.
Note how a face of an ordered simplex corresponds to a totally ordered subset
of vertices.

A geometric simplicial complex K in R” is a collection of simplices, of possibly
various dimensions, in R™ such that:

* every face of a simplex of K is in K, and

* the intersection of any two simplices of K is a face of each of them.

NN 2N

(a) A simplicial complex. (b) Not a simplicial complex.

Fig. 2.7: Example and non-example of a simplicial complex.

Intuitively, we can think of a simplicial complex K as made up of copies of standard
simplices of several dimensions, glued together among some common faces. We can
organize the relevant information about a simplicial complex into the skeleta K*, for
k=0,1,..., so that K* is the set of all k-simplices of K. This purely combinatorial
view on a simplicial complex yields the notion of an abstract simplicial complex.

An abstract simplicial complex K consists of a set of vertices K and for each
positive integer k, a set K* consisting of subsets of K of cardinality k + 1,
with the condition that every j + 1-element subset of K* is an element of K7.
The elements of K* are called the k-simplices of K.

As we will see later, a manifold is the generalization of the concept of surface to
higher dimensions. The standard definition of a manifold implies a global choice of
dimension for the surface, which in the case of practical datasets might not be appro-
priate. The intrinsic hierarchical structure between simplices of different dimensions
allows simplicial complexes to represent such a diversity in a straightforward way.
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A 0 0
w” |
} D} DN

1 1

D;

Fig. 2.8: Partial illustration of the category A.

Consider the three natural inclusions of a 1-simplex into the 2-simplex. Note how
each of these corresponds to an order preserving map [1] — [2]. For instance, the
inclusion of the 1-simplex as the face opposite to the vertex 1, symbolized in Figure
2.8 by the arrow D} which sends 0 +— 0 and 1 + 2. This pattern of objects and
arrows between them is the archetypal situation for category theory.

The category A has as objects the finite ordered sets [n] = [0,1,...,n] and as
morphisms the strictly order-preserving functions [m] — [n].

Recall that given a category, its opposite category is formed by the same collection
of objects, but with the morphisms reversed. By considering the reversed version of
D1}, d} : [2] — [1], we are effectively obtaining an association between the 2-simplex
and its 1-face missing the vertex 1. Now, since the previous definition of a simplicial
complex could be interpreted as a collection of sets which are consistent with the
face operation, we can recast our definition in terms of a functor.

A simplicial complex is a contravariant functor K : A — Set, i.e., a functor
A°P _; Set.

Once again, we invoke our structure-preserving motto. The adequate notion of a
morphism between two simplicial complexes is a simplicial mapping. Such maps
will play an important role in our attempt to regularize a parametric autoencoding
architecture.

2.2 Topology



Let K and L be geometric simplicial complexes. A simplicial map f: K — L
is given by a function f : K° — L° and its extension by convex interpolation

on each simplex in K.

Algebraically, if a point x € K can be represented using barycentric co-
ordinates {¢;} inside the simplex spanned by {z;; }, we have that f(z) =
/ (Z;nﬂ tjxij) = ;n:1 tjf(mij)-

Equivalently, a simplicial map is a natural transformation between the simpli-

cial complexes regarded as functors.

The maps D} represented an inclusion of the standard k-simplex as the i-th face of
the k + 1-simplex. However, consider the simplicial map = : [2] — [1] defined on the
vertices as m(0) = 0 and 7(1) = w(2) = 1. This represents a collapse of the 2-simplex
into the 1-simplex, and thus the image of [2] under 7 is an example of a degenerate
simplex, i.e., a simplex that does not have the “correct” number of dimensions. We
would like to be able to detect the “hidden” 2-simplex living inside 7([2]). For this,
we need to extend our notions of simplex and simplicial category.

A degenerate k-simplex is a collection [z;, ..., x;, | in which r;; < x; when-
ever j < [ such that the z;, are not all distinct.

The addition of degeneracy to our view of simplices translates in a straightforward
manner to the simplicial category, by allowing maps [m] — [n] to be non-necessarily

strict order-preserving.

The category A has as objects the finite ordered sets [n] = [0,1,...,n] and as
morphisms the order-preserving functions [m| — [n].

The category-theoretic language developed before allows us to present the general-
ization of simplicial complexes to simplicial sets elegantly.

A simplicial set is a contravariant functor K : A — Set.

16 Chapter 2 Mathematical Preliminaries



Every ordered simplicial complex K can be “completed” into a simpli-
cial set K by adjoining all possible degenerate simplices: for every
simplex [zj,,...,2;,] € K, we have in K all simplices of the form
[Tigs s Tigs Tiyy - - - Tigs - - -, T4, | fOr any number of repetitions of each vertex.

We have developed a full theory of simplicial complexes and are now ready to present
yet another way to classify topological spaces. Simplicial homology formalizes the
idea of the number of holes of a given dimension in a simplicial complex, and can
be algorithmically and efficiently computed.

The group C}, of k-chains on a simplicial complex K is the free abelian group
of finite formal sums with integer coefficients {Ef\il CiGi}, generated by the
k-simplices in K.

The boundary operator 9y, : Cj, — Cj_1 is the homomorphism, defined by the
action on the basis of C:

k
ak(O') = Z(—l)l[l‘o, cee ,i'z', ce ,:L'k].
i=0
The k-th homology group of a simplicial complex K is the quotient abelian
group Hy(K) = Zy /By = ker 0, /im Ok 4 1.

The k-th Betti number of K is defined as the rank of Hy (k).

The theory of singular homology is defined for all topological spaces and is much
more common among the broader mathematical community. Fortunately, singular
and simplicial homology agree (Hatcher ( ), Theorem 2.27 ) for spaces which
can be triangulated, i.e., spaces homeomorphic to a simplicial complex.

The homology groups for familiar spaces are listed next:

* Let GG be a connected graph with spanning tree 7" and let m be the number
of edges of G not in T. The first homology group of G is Z™. Since the
graph is connected, the zeroth homology group has rank 1; and since G is a
1-dimensional simplicial complex, the higher homology groups are trivial.

* In particular, note that a “shallow” 2-simplex has a spanning tree with one
edge left out, and thus its first homology group is Z, corresponding to the
1-dimensional hole enclosed by it.

2.2 Topology
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* The kth homology group of the n-sphere is trivial if k£ # n or Z if k = n. This

is consistent with the intuition that the sphere encloses an n-dimensional hole,
and has no holes of any other dimension.

The k-th homology group of the n-torus is the free abelian group z().
particular, for the 2-torus, the ranks of Hy, H; and H, are 1 (connected
component), 2 ("vertical” and “horizontal” cycles), and 1 (2-dimensional hole

enclosed by the surface of the torus), respectively.

In practical settings, we often are only provided with a sample {z;}}¥; of points
embedded in a metric space (X, d) and not a simplicial complex. The idea of persis-
tent homology is to build a filtration (growing sequence) of simplicial complexes
indexed by some scale parameter, and study the topological properties of the under-
lying space by computing the homology for all values of the scale parameter. One
important example of a filtration is that induced by a sequence of Cech complexes.

Consider a collection of open sets U = {U, };cs, where [ is an index set. The
nerve of U is the abstract simplicial complex whose k-simplices correspond to
all subsets of cardinality k of I, such that the intersection of the corresponding
open sets is non-empty.

Given a set of points 9 = {x;}}¥, in a metric space X and ¢ > 0 we define the

Cech complex C(9) as the nerve of the collection of open balls {B.(z;)} ;.

Clearly, given a sample 9, the inclusions C.(%?) C C. (%) holds for ¢ < ¢. Note
how the scale parameter € acts as global filter on the features we can detect on the
topological space. For instance, for a very small ¢, we get a space with a discrete
topology since each point is disconnected from the rest, while for large values of e,
we get a fully connected simplicial complex, with trivial topology.

Let X be a topological space. A good cover U is a cllection of open sets
U = {Ui}icr, where I is an index set, such that (J;c; U; = X, and for every

finite subset o of I, the intersection (), U; is contractible, i.e., is homotopy-

1€0
equivalent to a point.
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The goal of a construction like the Cech complex is to capture topological information
about the underlying space or distribution from which the point cloud is drawn from.
The following theorem guarantees that the topological properties we observe in the
complex are consistent with those of the underlying space.

Theorem 1: Nerve Lemma (Ghrist,

A topological space X is homotopy-equivalent to every finite good cover.

Smooth Manifolds

In the introduction we mentioned a special kind of topological spaces which locally
resemble an Euclidean space as part of the fundamental hypothesis of dimension re-
duction, which states that even though the samples we obtain might be embedded in
a high-dimensional space, for real data, most of the probability density concentrates
around low dimensional regions.

Fig. 2.9: Charts on a manifold.?

Let (/1,7 ) be a topological space. A tuple (U, ¢), where U € 9, and ¢ : U —
V is a homeomorphism to an open set V in R, is called a chart on .4 and the
mapping ¢ is called a coordinate system on U.

An atlas on J is a collection o = {U,, ¢} such that {U,} is an open cover
of . The homeomorphisms ¢, = pg 0 o' : a(Us NUs) = 05(Us N Up)
are called transition maps.

A smooth d-dimensional manifold is a topological space (/,7 ) enriched with
an atlas ¢/, such that all coordinate systems are homeomorphisms with images
in R? and all transition maps are smooth homeomorphisms, i.e., all partial
derivatives exist and are continuous.

2Taken from wikipedia.org/wiki/Differentiable_manifold.
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This definition of a smooth manifold is described as intrinsic as it makes no reference
to an ambient space in which the manifold might be embedded and highlights the
importance of charts as the additional structure compared to topological spaces.
Figure 2.9 illustrates the consistency condition imposed on transition functions.

Intuitively, if two charts are covering the same region of a manifold (U,NUp # @), we
would like to translate smoothly between the coordinates of points in the intersection
given by the systems ¢, and ¢g. One can consider a point in the manifold to be
an equivalence class of points which are mapped to each other by transition maps.
The following theorem guarantees that the intrinsic chart-based construction, or the
view of a manifold as a surface in a Euclidean space are equivalent.

Any smooth real d-dimensional manifold can be smoothly embedded in R??.

Riemannian manifolds are bridges between topological and metric spaces. They are
enriched with a metric, which makes it possible to define various geometric notions,
such as angles, lengths of curves, volumes, and curvature. In some sense, a topology
determines the shape of a space, while a Riemannian metric specifies its geometry.

A smooth Riemannian manifold (., g) is a smooth manifold .4 equipped
with an inner product g, on the tangent space 7,/ at each point p that varies
smoothly from point to point. The family g, of inner products is called a
Riemannian metric tensor.

Let (1, g) be a Riemannian Manifold. Let v(¢) : [0, 1] — . be a smooth curve
on /. For every t € (0,1), the inner product g, ;) induces a norm || - [|,;y on
the tangent space T’/ , and thus on the tangent vector 7/'(t) € T,

The length of the curve « is defined as the integral

1 1
L) = [ IWOlhedt = [ oo @O 7).

A geodesic between two points p, ¢ € /4 is smooth curve between them which
minimizes the energy functional E(v) = § fol Gye) (Y (), (t))dt.
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As we have argued previously, certain dimension considerations regarding simplicial
complexes make them more desirable as an inductive bias for practical applications.
However, in order to ensure that we can restrict our attention to simplicial complexes,
we should be able to represent any manifold by a simplicial complex. That is precisely

the content of the following theorem, illustrated in Figure 2.10.

Theorem 3: Triangulation of a Manifold (Cairns,

Every smooth manifold ./ admits a triangulation (K, h) consisting of a sim-
plicial complex K and a homeomorphism A : K — .

Fig. 2.10: Approximation of a smooth manifold in R? with a simplicial complex.

The following result by Niyogi et al. (2008) provides conditions under which a Cech
complex constructed from a randomly sampled point cloud is homotopy equivalent
to the underlying manifold. The injectivity radius T of a Riemannian manifold .#
is the largest number for which all rays orthogonal to .# of length 7 are mutually
non-intersecting. Intuitively, the notion of deformation retraction formalizes the idea
of continuously shrinking a space into a subspace.

Theorem 4: Manifold Approximation by a Random Sample

Let ./ be a smooth compact submanifold of R™ with injectivity radius 7. Let
9% be a collection of points on . such that the minimal distance from any
point of . to % is less than ¢/2 for ¢ < 7+/3/5, then the Cech complex Cy (%)
deformation retracts to ./ .

2.3 Measure Theory

Measure theory is the study of measures, i.e., systematic ways to assign a “size” to
each suitable subset of a set in a way that generalizes the concepts of length, area,
and volume. Measure theory is also a framework which allows to unify the common

2.3 Measure Theory
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notions of continuous and discrete random variables as examples of variables which
admit densities (in the sense of a Radon-Nikodym derivative) with respect to the
Lebesgue or counting measure, respectively.

It would be desirable to assign a size to every subset of a space (2, but it is in
general not possible to do so. For example, the construction of the Vitali sets via
the axiom of choice shows that the power set of (2 is “too large” to assign a size to
each of its elements in a consistent and non-trivial manner when 2 is uncountable.
For this reason, one considers instead a smaller collection of privileged subsets of
Q, a o-algebra, which is closed under the operations of taking complements and
countable unions, and whose elements are called measurable sets.

Let Q) be a set. A o-algebra on ) is a collection & C 2 which satisfies:
c JeF,
e forall Ae ¥, A€ ¢ &,
e for every sequence (Ay)nen € F, U,en An € F.
A measure on a o-algebra ¥ is a function p : ¥ — [0, oo] such that:
* u(2)=0,and

* 1(UpenAn) = Dneni(A,) for every sequence of disjoint sets
(An)nGN g 9:

A tuple (Q, %) is called a measurable space, while a measure space is a tuple
(Q,F,p). If n(2) =1, pis called a probability measure and is usually denoted
by P. In that case, (2, %, P) is called a probability space.

Let us examine several examples of the measurable and measure spaces:

* For any countable set .S, it is customary to take as o-algebra the power set of
S and as measure, the counting measure 7(B) = |B|, corresponding to the
cardinality of the subset B.

* Itis easy to verify that the arbitrary intersection of o-algebras is still a o-algebra.
Given a collection ¥ of subsets of (2, we define the o-algebra generated by ¥
as the intersection of all o-algebras which contain &
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* In a similar fashion as before, the collection of open balls of a topological space
S generates a o-algebra, called Borel o-algebra on S, denoted % (S).

* Consider the interval [0, 1] endowed with the subset topology from R. Let A be
the 1-dimensional Lebesgue measure defined on the intervals A([a,b]) =b—a
for a < b (and Carathéodory-extended to % (|0, 1])). The tuple ([0, 1], % ([0, ]) A)
forms a probability space.

932
* The space (R,%(R),P"), where P"(B) = [, \/%G_Td)‘(x) is a probability
space. The measure P is called the standard Gaussian distribution, and the
integrand is called the density of this distribution with respect to the Lebesgue

measure on R.

It should not be a surprise that we consider structure-preserving maps between
measurable spaces, called measurable mappings. In the context of probability theory,
those maps are called random variables. Note the similarity between the following

defintion and that of continuous mappings.

A mapping between measurable spaces f : (Q,F) — (V,9) is called measur-
able if for every B € 4, the preimage f~!(B) € ¥

A VU-valued random variable is a measurable mapping X : (2, %,P) — (¥, 9).

The remarkable aspect of random variables is that their structure-preserving property
allows us to “transport” or “push-forward” the measure on the domain probability

space to the target measurable space.

A V-valued random variable X : (Q,%,P) — (¥,%) induces a measure on ¢
by the pushforward of P under X, defined for B € %4 by:

PX(B) =P(X Y(B)) =P({w € Q | X(w) € B}).
The measure PX is called the distribution or law of the random variable X.
So far, our description of random variables requires our ability to construct a domain
probability space. The following theorem guarantees that for every sufficiently

well-behaved probability measure on a metric space, there exists a random variable

whose law matches our prescribed measure.

2.3 Measure Theory
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Theorem 5: Skorokhod’s representation theorem (Dudley,

Let Q be a probability measure on a metric space ¥ with separable support.
Then there exist a probability space (2, %, P) and a U-valued random variable
X defined on it such that PX = Q.

We close this section with a family of measures which will be very important in
our treatment of probabilistic models based on random simplicial complexes. A
characteristic of the n-dimensional Lebesgue measure is that any m-manifold in R",
with m < n, has measure zero.

However, we would like to describe that within a simplicial complex in R", the
1-simplices have length, the 2-simplices have area, etc. The d-dimensional Hausdorff
measure provides such a generalization in a way that coincides exactly with the
Lebesgue measure for Euclidean spaces.

Let (S, p) be a metric space. The diameter of a subset A of S is defined
by diam A = sup {p(z,y) | =,y € A}. The d-dimensional Haussdorff (outer)

measure of a subset U of S is defined by

HUU) = lim HLU) = lim inf { > (diam 4;)*: | J A; 2 U, diam 4; < 5}.
=1 i=1

2.4 Fuzzy Sets

Under the Zermelo-Fraenkel axioms for set theory, the membership of an element
in a set is assessed in a binary fashion: the element belongs to the set or not. In
fuzzy set theory, this condition is relaxed, allowing for a gradual assessment of the
membership in terms of a real number in the interval [0, 1]. Note that a real valued
membership is a natural way to encode uncertainty in the structure of a set.

Let I be the unit interval (0, 1] with open sets the intervals (0, a) for a € (0, 1]. We
consider I as a category of open sets, with morphisms given by inclusion.
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A fuzzy set is set S enriched with a function i : S — [0, 1]. Given fuzzy sets
(S, ) and (7, v) a morphism of between them is a function f : S — T such
that for all s € S, u(s) < v(f(s)).

Equivalently, a fuzzy set can be defined as a contravariant functor % : I°P —
Set such that all morphisms % (a < b) are injections. We denote the category
of fuzzy sets and morphisms betwen them by Fuz.

Intuitively, one can think about the action of the functor % on the element (0, a)
as selecting the set of elements whose membership is at least q, i.e., in terms of
the membership function, the super-level set {y > a}. For every a,b € (0, 1] with
a < b, one gets an inclusion between the super-level sets {y > a} 2 {u > b} which
justifies the requirement for injectivity in the definition. Note how the inversion
<+ D relates to the definition of a fuzzy set as a contravariant functor.

It should be clear that fuzzy sets represent a generalization of classical (crisp) sets,
for which the membership is an indicator function. Similarly, there are ways to
define operations between fuzzy sets which resemble their crisp counterparts.

A strong negator — is a monotonous decreasing involutive function with -0 = 1
and -1 = 0.

A t-norm is a symmetric function T : [0, 1]? — [0, 1] satisfying:
* T(a,b) < T(c,d) whenever a < cand b < d,
* T(a, T(b,c))=T(T(a,b),c), and
* T(1,a) = a.

Given a t-norm T, its complementary conorm under the negator — is defined
by L(a,b) = =T (—a, —b).

A De Morgan triplet is a triple (T, L, —) where T is a t-norm, L is the asso-
ciated t-conorm, — is a strong negator and for all a,b € [0,1] one has that
-1 (a,b) = T(—a,b).

The most common example of a De Morgan triplet is the one formed by T ,;oq(a,b) =
ab, Lsym = a +b — ab and —(a) = 1 — a. Note how the t-norm and t-conorm express
the probability of intersection and union of independent events. Another important
example arises by taking Tyn(a,b) = min(a,b), Lmax = max(a,b).

2.4 Fuzzy Sets
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Let (T,L,—) be a De Morgan triplet. Let U be a set and let 1 and v be
membership functions on U.

The complement of 1 given by the function — o p.
We define the intersection of 1 and v as the function 7,~,(-) = T (u(:), v())-

Th union of p and v is the membership function 7,0, () = L(x(:), v(+)).

Given two fuzzy membership functions on a common set U, we can define a notion
of dissimilarity between them by means of the fuzzy set cross entropy .

The cross entropy between two fuzzy sets ¢ and v on a common carrier set U
is defined as

w(w 1 — p(u
- () 0o (1229).
uclU viu u

For every fuzzy set, one can construct a family of distributions

{Ber(u(u)) | w € U}. Note that the fuzzy cross entropy can be rewritten
in terms of a sum of pointwise Kullback-Leibler divergences

Z KL(Ber(u(u)) || Ber(v(u))).

uelU

Not very surprisingly, just as we could construct the category Set of sets and function
between them, there is a category Fuz of fuzzy sets and fuzzy set morphisms between
them. With this category in mind, we can state a final generalization of simplicial
complexes and sets.

A fuzzy simplicial complex is a functor K : A°P — Fuz. A fuzzy simplicial set
is a functor K : A°P — Fuz.

We denote the category of fuzzy simplicial sets and natural transformations
between them by sFuz.
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2.5 Generative Models

We assume familiarity of the reader with concepts related to Deep Learning. For
completeness we define graphical models, neural networks, and autoencoders in this
section. Goodfellow et al. ( ) provide a good overview of the field. In particular,
we refer the interested reader to chapters 6, 14 and 20.

Suppose we are given a dataset of points coming from a probability distribution P
on R™. If P is, for instance, the distribution of pictures of cars, a concise description
of it is, for all practical matters, non-existent. Thus, we need to resort to alternative
ways to gain insights about P.

According to Bishop ( ), “producing synthetic observations form a generative
model can prove informative in understanding the form of the probability distribution
represented by that model”. Additionally, being able to sample new points from a
distribution which resembles P would allows us, among other things, to estimate
intractable sums, speed up training, or provide the raw material on which to train a
model to solve a particular task.

Graphical Model

A graphical model is a probabilistic model which expresses conditional
(in)dependence relations between random variables by means of a graph. In
the case of a directed acyclic graph, the model represents the factorization of
the joint distribution of all random variables given by:

n

P(le' C ’Xn) = H P(X’L | pai)7
=1

where pa, is the set of parents of node X;.

Let us illustrate the concept of a graphical model by means of an example. Suppose
that we are given a dataset {x;}% ;. Assume that these observations are independent
and follow a Gaussian distribution with variance 1 but with an unknown mean pu.
We can, in turn, reflect our uncertainty about x by selecting a prior A (i | uo, 03),
for some i, 0p. All the previous dependence (between and observation x and )
and independence (between two different observations) relations can be concisely
represented by the graphical model in Figure 2.11.

2.5 Generative Models
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Hos Tp

t=1,---,N

Fig. 2.11: Graphical model for an iid sequence of Gaussian random variables.

According to the definition, and our selection of Gaussian distributions for the prior
and observation model, we can factorize the joint distribution of the observations
{z;} and unknown parameter . by:

n

p({zidil p) = N (| po,od) TN (2 | 1)
i=1
Given this representation, we can readily postulate maximum likelihood or maximum
a posteriori estimates for the parameter . Additionally, we can generate new
datapoints {#;} by ancestral sampling: sample i ~ N (j0, 02) and then sample {#;}
iid according to N (f1, 1). If the model were a perfect representation of the data, then
the probability distribution of {#;} would coincide with the real distribution.

Neural Networks

Consider the function f : [0,...,255]?8%2® — {cat, dog, none}, which receives as
input a 28-by-28 pixels grayscale image and determines whether it is a cat or a
dog, or neither. There are 325628” ~ 1095760 possible such functions. In comparison,
the estimated number of atoms in the universe is around 10%°. It seems like a very
hopeless situation to find one such function. And it is indeed!

A neural network from R"n to R™ut is a function of the form
f=o0p0Apo...000A5...010Aj,

where {A;} are affine transformations between Euclidean spaces of consistent
dimensions and o; is a non-linear, non-polynomial function, applied element-
wise. In some cases the final activation function oy, is taken to be an identity
map.
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Neural networks are special types of functions which try to approximate a desired
behavior by successively composing affine and non-linear transformations. This
means that we give up on the goal to find the perfect classification function f, but
rather focus on a particular family of functions, which are hopefully broad enough
to approximate f adequately.

Note that neural networks are inherently hierarchical. Every layer (a pair o; o A;)
builds on top of the representation provided by the previous layer. The following
theorem ensure that this hierarchical structure makes the class of neural networks
rich enough for us to approximate any desired continuous behavior arbitrarily well.

Let X be a compact subset of R¥ and let “6(X) be the class of continuous
functions on X. Let A" be the class of functions from R* to R which can be
implemented by neural networks with one m-dimensional hidden layer and
activation function o.

If o is continuous, bounded and non-constant, then the class J,,cy V" is
dense in 6 (X).

AutoEncoders

An autoencoder is a pair of neural networks which are trained to be mutual inverses.
We hope that by training the joint system, we can learn useful properties of the input
data. For this reason an autoencoder which acts as an identity function over the
whole input space is not particularly useful. Instead, autoencoders are constrained
in ways which do not allow for perfect invertibility of the individual components.

Let X and Z be Euclidean spaces and .# a submanifold embedded in X . An
autoencoder for . is a pair of functions e : X — Z and d : Z — X such that
doe|y ~idy. The images of e are usually called codes, and the images of d,
reconstructions.

For instance, undercomplete autoencoders involve a dimensionality bottleneck, which
destroys the invertibility and forces the autoencoder to capture the most relevant
characteristics of the data in the available dimensions. Alternatively, overcomplete
autoencoders, rather than constraining the architecture, impose conditions on the
learned codes by, for example, encouraging sparsity or smoothness.
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UMAP as Approximate MAP

Mathematics in general is fundamentally the
science of self-evident things".

— Felix Klein

In this section we provide an interpretation of UMAP as an approximate maximum a
posteriori estimator on a statistical model parameterized by simplicial complexes.
First, we provide a brief account of the theoretical foundations of UMAP. We then
prove an equivalence result between fuzzy sets and a class of random variables.
We introduce the notion of a K-parameterized statistical model and introduce the
Haussdorff distribution on a simplicial complex. We show that in the limit of a
large dataset, under certain conditions, the true underlying topological space can be
recovered by maximum likelihood. Finally, we cast UMAP as an approximate maxi-
mum a posteriori estimator via a Lagrangian relaxation of a constrained maximum
likelihood problem.

3.1 UMAP

Consider a dataset 9 = {z;}}¥, of samples in R". Recall the construction of the
Cech complex C/(%) as the nerve of the collection of open balls of radius e centered
at the points in 9. The guarantee provided by the Nerve Lemma (Theorem 1)
is conditioned on the collection {Be(xi)}iNz , to be a good cover of the underlying
topological space, i.e., all intersection of such balls has to be contractible. One way
to ensure this, is to endow the underlying manifold with a Riemannian metric such
that our sample is approximately uniformly distributed with respect to that metric,
which is in general different from that inherited from the ambient space.

The main idea of UMAP is to construct a custom metric for each z; so as to ensure the
validity of the uniformity assumption. Then translate each of these metric spaces into
fuzzy simplicial sets, in such a way that the topological information is filtered but
preserving information about the metric structure. Finally, merge these individual
fuzzy sets by taking a fuzzy union between them. This provides a fuzzy topological
representation of %, denoted by K.
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If we are interested in finding a low-dimensional embedding for %, we can start with
a (randomly) initialized embedding %, compute its fuzzy topological representation
K and iteratively optimize % so as to minimize the fuzzy set cross-entropy between
the fuzzy topological representations, C(Kgy, K%). In practice, this is done by
computing the fuzzy set cross-entropy betwen the 1-skeletons of each of the simplicial
sets considered as fuzzy sets of edges.

Theorem 7: UMAP Adjunction

Let FinEPMet be the category of finite extended pseudometric spaces with
non-expansive maps as morphisms. For a € (0, 1] define the metric d, by
dy(z,2) = 0 and d,(z,y) = log (%) for z # y. Given a simplicial set K,
let K% be the set K([k], (0,a)), in other words, the set of k-simplices with
membership at least a.

Define the functor FinReal : sFuz — FinEPMet by:

FinReal(A%,) = ({*1,...,%1},ds) FinReal(K) = colim FinReal(A%,).
A7 =K

Define the functor FinSing : FinEPMet — sFuz by:
FinSing(Y)* , = Hompingpmes (FinReal(A%,),Y)

The functors FinReal and FinSing form an adjunction FinReal 4 FinSing.

Around every datapoint x; UMAP constructs a finite extended pseudo-metric space.
This construction is based on an approximation to the geodesic distance from z; to
its neighbors by normalizing the distances with respect to the distance to the n-th
nearest neighbor of x; (McInnes and Healy (2018), Lemma 1). In practice, this is
performed by constructing a fuzzy set of edges from z; to its 7 nearest neighbors
such that the cardinality of the set is equal to 7. This is related to the choice of a
target entropy for the conditional distribution around a point in t-SNE.

(a) (X,d) € FinMet (b) (X,d;) € FinEPMet (c) FinSing(X,d;) € sFuz

Fig. 3.1: Image of the singular functor in the context of UMAP.
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Let us study the action of the singular functor on the example metric space shown in
Figure 3.1. For every datapoint ¢ we construct a finite extended pseudometric space
(X, d;) around it by considering the distances from ¢ to its 7 = 3 nearest neighbors
beyond the distance to the nearest neighbor j. For this reason, d;(i,j) = 0 even
though ¢ # j, and those points which are not within the 7 nearest neighbors of 4
are considered to be infinitely far way. This has an important consequence in terms
of the size of the fuzzy set of edges, since it restricts the complexity from O(N?) to
O(Nn). Besides, we take d;(p, q) = oo if neither p or ¢ are equal to .

Upon applying the singular functor, we end up with a fuzzy simplicial set (which
in this case corresponds to a fuzzy set of edges centered at 7). Note how there is a
full-strength connection between i and its nearest neighbor. We highlight the fact
that the adjunction is indeed a weak form of equivalence between the categories
FinEPMet and sFuz. For instance, trying to reconstruct the metric space from the
fuzzy simplicial set, we only know that 7 and j should be nearest neighbors, but we
have lost information regarding the exact distance between them.

‘ a—0 a=e! , aﬁl‘

Fig. 3.2: Image of the metric realization functor on objects of the type ([2], [0, a)).

Figure 3.2 illustrates the action of the metric realization functor on the representable
functors of objects of the type ([2], (0,a)). Note that this corresponds to the finite
extended pseudometric space formed by the corners of the standard geometric
2-simplex, scaled according to the membership strength. Thus, 2-simplices with
lower membership (a close to zero) result in corners being placed far from each
other, while 2-simplices with strong membership (a close to one) induce a mapping
to a shrunk geometric simplex.

For completeness, we present Algorithms 1 and 2, which summarize the computa-
tional pipeline for UMAP. In practice the fuzzy topological representation Kz is not

3.1 UMAP
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fully computed, but rather the objective is optimized via negative sampling on the
edges of Kq and then the corresponding memberships in % are calculated.

Algorithm 1: FuzzyTop - Fuzzy topological representation of a dataset.

Data: Dataset 9 = {z;}}¥; C R?, number of neighbors .
Result: Fuzzy topological representation of % given by Ky .
fori=1,...,Ndo

Compute (9,d;) € FinEPMet

K; = FinSing(9%, d;)) € sFuz
end
Ko = 1Y, K;

Algorithm 2: UMAP - Uniform Manifold Approximation and Projection.

Data: Dataset 9 = {z;}}¥; C R", number of neighbors 7, embedding dimension d,
maximum iterations i,.x, learning rate a.

Result: Low dimensional embedding of % given by % = {z;}¥, c R%

Kg = FuzzyTop(9,n)

Initialize % C R?
Ko, = FuzzyTop (%))
forT=1,...,%imax do
I = C(Kg, Ky, )
% =%1—aVeyg_ |l
Ks_ = FuzzyTop(%,)
end

3.2 A correspondence between random variables
and fuzzy sets

We now present an equivalence between the fuzzy sets defined on a set S and
a special kind of set-valued random variables. This result will be crucial in our
probabilistic interpretation of UMAP. Let us begin with a definition.

Let S be a set, (92, %, P) a probability space and (2°, %) a measurable space.
A mapping X : (Q,%,P) — (25,%) is called an S-set-valued random variable.

In the case () is a totally ordered set, we say X is non-increasing if for all
w,w € Qwithw <, X(w) D X(u).
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Theorem 8

Let 7 (S) be the set of fuzzy sets with common carrier set S. There exists a
bijection between ¥ (S) and the class non-increasing S-set-valued random
variables.

Proof. Let (€2, %, P) be the probability space ([0,1],%,\). Recall that F(S5) is, by
definition, the set of functions Homge (S, [0,1]). For each p in F(S) define the
mapping M, : Q — 2° by:

Mu(w) = {5 € S| u(s) > w}.

Let ¥ be the largest o-algebra on 27 for which the all mappings in {M,, | € F(S)}
are measurable. It is clear that each ), is, by construction, non-increasing, and
thus, by definition of ¥, an S-set-valued random variable. Let | (.S) be the class of
non-increasing S-set-valued random variables.

Consider the map .N : S — 22° which sends s € S to the set {W € 25 | s € W}.
Given M € (5), we would like to define a membership function on S by:

par(s) =P(M 3 s) =P(M € N(s)) = PM(N(s)).

However, for this construction to make any sense at all, we need to ensure that
the pre-images of the sets .¥(s) are measurable sets in %. For this purpose, let
Mg = sup{w € Q: s € M(w)}. Since M is non-increasing, for every w € [0, M),
s € M(w), which implies that M (w) € .N(s). On the other hand, for all w € (M, 1],
s ¢ M(w), and thus there is no N € N (s) such that M(w) = N. In conclusion, for
every s € S, M~1(N(s)) = [0, M( (where the right end-point might be open or
closed), and therefore a Borel-measurable set.

We are now certain that the definition of u); is sound, and we even have a simple
expression for it given by pa(s) =P (M1 (N (s))) = A ([O’MSO = M,.

We now show that the proposed mappings establish a bijective correspondence
between ¥ (S5) and | (S). Let u € F(S). Recall that the condition s € M,(w) is
equivalent to y(x) > w. Therefore we have pointwise equality between y and py,,:

pn, (s) =M, =sup{w e Q:se€ My(w)} =sup{w € Q: u(s) > w} = u(s).

Finally, let M €| (S). Since s € M(w) if and only if M > w, we have pointwise
equality between M and M,,,:

My, (w)={s€S:um(s) >w}={s€S: My >w}=Mw).

3.2 A correspondence between random variables and fuzzy sets
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3.3 UMAP as Approximate MAP

K-parameterized statistical models

A statistical model is a pair (5, M), where S is the set of possible observations
and M is a set of probability measures on S.

We say M is ©-parameterized if every measure in M can be parameterized by
some § € O, i.e., M= {Py | 0 € ©}. The parametrization is called identifiable
or injective if Py, = Py, implies 6; = 65.

i=1,--- N

Fig. 3.3: Graphical model representing the generative process of observations = under a
statistical model parameterized by 6.

In the usual setting, we interpret the generative process of the data as being de-
termined by a distribution given by a "true" value of the parameter 6. This
corresponds to the graphical model presented in Figure 3.3. The key step in our ex-
tension is to consider distributions which are parameterized by simplicial complexes.
For this, we introduce the Hausdorff distribution induced by a simplicial complex.

Let K be a simplicial complex in R". For every simplex ¢ € K, define the
probability measure ¢, on % (R™) by:

; B %dim(a)(. N 0’)
o() = Fedim(@) ()

We define the Hausdorff probability distribution on %8 (R") induced by K as

H(|K) = #1K S 6,00,

ceK

where # K is the number of simplices in K
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Throughout this work, and in practice while training models, one only consid-
ers a finite dataset, and thus a complex with a finite number of simplices, for
which the induced Hausdorff measure is well-defined.

Fig. 3.4: An example of a simplicial complex.

Consider the simplicial complex shown in Figure 3.4. Let us examine the value of
the Hausdorff distribution induced by K for several Borel-sets in R?. Note that K
contains 9 simplices: 4 0-simplices, 4 1-simplices and 1 2-simplex.

* B = [0]. We only need to consider those simplices with which B has a
non-empty intersection, i.e., [0], [0, 1], [0,2] and [0, 1, 2].

H(B|K) = % (6101([00) + 80,1 ([0]) + 0j0,21([0]) + Jj0,1.21([0])) = é,

since any Hausdorff measure of dimension greater than zero vanishes at [0].
e Similarly, for B = {0,1,2,3}, HB|K) = ;

* Let B =10,1,2]. Note that if o C B, then 6,(B) = 1.

1
H(B|K):§(5[O](B)+5[l]( ) + 012)(B) + daBT + dj0,1)(B

+ dj0,2](B) + 0p1,21(B) + dpastBT + djo,1,2)(B

Note that Jj3(B) vanishes since the intersection is empty. d;,3(B) is also null
since, even though the intersection [1,3] N B = [1], [1, 3] is a 1-simplex and
therefore, the 1-dimensional Hausdorff measure of [1] is zero.

» If B is the green triangle, H(B|K) corresponds to 3 tlmes the proportion of
the area of [0, 1, 2] covered by B.

Let § = {H(:|K) | K is a simplicial complex in R} and consider the statistical model
(R™, 9). Note that (R", §) is injectively parameterized by the set of simplicial com-
plexes in R™. The corresponding graphical model is presented in Figure 3.5.
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i=1...-

1 1

N

Fig. 3.5: Graphical model for a K-parameterized statistical model on R™.

Theorem 9

Let 9 = {x;}, be a sample of points in R". The distribution induced by the
maximum likelihood estimator corresponds to the empirical distribution of
the data.

Geometric Proof. Let K be an arbitrary simplicial complex in R™ and let H(- | K)
be its induced Hausdorff distribution. Recall that the value of measures d,({z})
vanishes for all o of dimension greater than one.

N Mo K'Ng
H@ | ) = R} | ) =3 et eroy = 0

i=1 i=1

Considering H(% | K) as a function of K, we see that we can maximize the numera-
tor by taking K = % and minimize the denominator by not adding any high order
simplices, i.e, K*2! = @. For such K, H(- | K) is clearly the empirical distribution
of the data. O

Probabilistic Proof. Recall that maximum likelihood estimation can be casted as a
minimization of the Kullback-Leibler divergence between the empirical distribution
of the data and the model distribution. Since we can represent the empirical data
distribution with H(- | K) by choosing K to be K = % and K*2! = &, the proper-
ties of the Kullback-Leibler divergence and the injectivity of the parametrization of
$) imply the desired result. O
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Let (S, d) be a metric space and A, B be subsets of S. The Hausdorff distance
is defined as

du(A, B) = inf d(a,b inf d(a,b) .
u(4, B) maX{ilelg;gB (a, )’233133& (a,)}

Intuitively, the Hausdorff distance is the largest of all the distances from a point in
one set to the closest point in the other set.

Theorem 10

Let # (R™) of 2R" be the set non-empty compact subsets of R™. & (R") can be
endowed with the structure of a separable metric space.

Proof. For simplicity, we show the proof for the case n = 1. Take the Hausdorff
metric on 4 (R). For a proof that dy; is a metric on A (R), see (Burago et al., 2001).

Recall that Q is dense in R. Consider the set #(Q) = {A C Q | 0 < |A|] < oc0}. Note
that every such A is finite and thus compact, i.e., A € K (R). It is easy to see that
F (Q) is countable. We show that & (Q) is dense in # (R).

Take E € #(R) and € > 0, arbitrary. The open ball of radius ¢ around E in A (R) is
given by B(F) = {W € KX (R) | du(W, E) < €}.

Consider the open cover £ = U Be(e). Since E is compact, there exists a finite

eckE
N

sub-cover E = | J Be (e;).

=1

Therefore, for every e € E, there is an e; such that d(e,e;) < §. Now, for every i
choose a ¢;(e;) € Be(e;). By the triangle inequality, for all e € E, there is a g;(e;)
such that d(e, g;(e;)) < d(e, ;) +d(ei, q;) = 5§+ § = %e <e Let A= {q(e)}N,.

Since the largest of distance from a point in E to A is bounded by %e and the
largest distance from a point in A to the closest point in £ is bounded by §, then
du(A, E) < e. And thus, ¥ (Q) is a countable and dense set in A (R).

Therefore # (R) can be made into a separable metric space. O

3.3 UMAP as Approximate MAP
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Let 9 = {z;}}¥, be an iid sample of points which follows a distribution
H(- | Ktrue), Where Kyye is a simplicial complex in R". In the limit as the
number of samples N goes to infinity, the maximum likelihood estimator Ky,

converges (in probability) to Kirye.

Proof. Since every simplex in R™ is closed and bounded, by the Heine-Borel theorem,
it is compact. Every finite simplicial complex in R™ is also compact since it is a finite
union of simplices. And thus each finite simplicial complex lives in the (by the
previous theorem) separable metric space A (R").

The result follows directly from the consistency of maximum likelihood estimators,
the injectivity of the parametrization ) and the fact that the true distribution can be
represented by an element in ). O

Random Simplicial Complexes

The next step in our characterization of the UMAP method as a posterior optimization
problem is to adopt a Bayesian approach and treat the parameters of the distributions
in our statistical model, i.e., the simplicial complexes, as random variables. This
leads us to the notion of a random simplicial complex.

A random simplicial complex on R™ is an R"™-set-valued non-increasing random
variable K such that every realization of K is a simplicial complex in R"™.

. o .

i=1--- N i=1--- N

(a) Specify a prior on ¢ parameterized by «. (b) Inductive bias as a prior on K.

Fig. 3.6: Graphical models for Bayesian generative models.

The graphical models presented in Figure 3.6 prescribe a factorization on the joint
distribution of the variables {z;} and 6 (or K). The generating process of z | 6 is
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given by a ©-parameterized statistical model. The prior (parameterized by «) on

6 has the effect of placing higher probability at regions in © which are preferred a

priori, for example, because they induce simpler distributions (Goodfellow et al.,

bias.

). We refer to this preference for certain types of solutions as an inductive

The UMAP principles induce a series of constraints on the types of admissible random

simplicial complexes K. In other words, our prior on K is an inductive bias which

arises from the UMAP construction. Note how the non-increasing nature of K allows

us to express most these constraints as boundary conditions.

)

(ii)

(iii)

(iv)

Each 0-simplex should belong to K with membership 1: K(0)° = K (1), or
quantitatively, dy (K (0)°, K(1)%) = 0.

The manifold is locally connected in the sense that every 0-simplex is connected
to its nearest neighbor via a 1-simplex with membership 1. Let K (w)™ be
the 1-nearest neighbor graph induced by K (w)?, considered as a simplicial
complex in R™. We have the constraint K (0)™ = K (1)"".

The size of the neighborhood around every point (in terms of the cardinality
of the fuzzy set of edges starting at said point) should be 7. Recall that K (v))
is equivalent to the membership of ) in K, considered as a fuzzy set. Thus, we
can state the constraint as:

Z K(lo,0']) =7 Vo € K(0)°.
o' e K(0)°

Finally, we require that if the O-simplex ¢’ is further than & to o, the corre-
sponding membership should be weaker. Therefore, for all o,0’,5 € K(0)Y, if
d(o,0") > d(o,5), then include the constraint K ([0, ¢']) < K ([o,5]).

Let 9 = {z;}}¥, be an iid sample of points which follows a distribution

H(: | Ktrue), Where Kirye is @ random simplicial complex in R™.

The random variable associated to the simplicial complex constructed by

UMAP can be interpreted as an approximate maximum a posteriori estimate.

3.3 UMAP as Approximate MAP
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Proof. Consider the constrained maximum log-likelihood optimization problem:
max}i{mize logH(2 | K)
subject to (i) — (iv)

Then, its Lagrangian relaxation is given by:

Kuymap = argmaxlogH(2 | K) + £(K),
K

where £ (K) be the Lagrangian associated to the finite set of constraints (i) — (iv)
and can be interpreted as a log-prior on K. O

Quantifying Uncertainty about Kiye

We have constructed a theory based on simplicial complexes and their random exten-
sions. A central question now is: given a data sample, and an (ML or MAP) estimate
K for the underlying simplicial complex, how can we quantify our uncertainty about
the true location of the simplicial complex? In other words, given a point x* € R",
we would like to measure our confidence on whether x* belongs or not to Kiye.
The answer to this question arises naturally from our equivalence between random
variables and fuzzy sets.

Consider the membership function on R" given by i (z) = P(K > x). Note that
this is equivalent to the largest of the memberships of the simplicial complexes in K
(considered as a fuzzy set) which contain z.

A disadvantage of this definition is that the complexity for finding (if it exists)
the simplex of maximum strength which contains a given test point grows in a
combinatorial fashion with the size of the dataset. One would desire to have
constant time evaluation of such membership. We propose an adversarially learned
membership function.

Consider a distribution P of points in R™ with compact support =. One can learn a
discriminator pagy : R™ — [0, 1] by training a neural network under a cross-entropy
loss in which samples from P are considered true, and thus should attain a value of
lady close to 1, and inputs sampled uniformly on = are considered fake.

This naive approach suffers from the curse of dimensionality as n gets larger. Suppose
now we had access to a trained autoencoder (e, d) on =, such that the dimension m
of the latent space is much smaller than n. We can alleviate the problem by learning
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the discriminator on the distribution induced on the latent space by P and e. Then
we can define p}y () = pjy,(e(x)) for every z € R™.

Let us now consider whether this construction would let us recover the underlying
simplicial complex. In other words, in the case when K\ is almost surely constant,
does 1z (x) converge to the indicator function on Kiye, as the number of datapoints
goes to infinity?

In practice, we perform computations with the 1-skeleton of the fuzzy simplicial
set. By definition (Spivak, ), this can be used to construct the fuzzy simplicial
set by recursively defining the membership of the non-degenerate simplices as the
minimum of the memberships of its faces. Since the minimum t-norm is an upper
bound for every other t-norm, this is an “optimistic” view on the membership of
higher-order simplices.

Recall that the construction of the nerve of a cover included a finite subset if and
only if the intersection of all the balls centered at the points corresponding to the
subset was non empty. In our setting: a simplex has positive membership if and only
if the minimum membership of its faces is positive. This is, of course, equivalent to
the condition that all the vertices of the simplex are connected to each other with
positive strength.

This, would yield a fuzzy construction analog to that of a Vietoris-Rips complex rather
than a Cech complex. Fortunately, Vietoris-Rips complexes also possess convenient
theoretical properties regarding homotopy-equivalence under certain conditions
(Latschev, ). Future research can be devoted to formalize this connection and
thus provide a theoretical proof about the recovery of the true manifold/simplicial
complex based on the fuzzy topological representation created by UMAP. In the
experiments section we verify this claim empirically for several manifolds in 2 and 3
dimensions.

3.3 UMAP as Approximate MAP
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Simplicial AutoEncoders

Experience [...] tells us not which is the truest
geometry, but which is the most convenient”.

— Henri Poincaré

In this section we propose two extensions of UMAP: first, we introduce simplicial
autoencoders as simplicial maps between the high-dimensional data and the low-
dimensional embedding created by UMAP; additionally, we extend our parametric
autoencoder with a model for the distribution of codes in the latent space, based on
a mixture of uniform distributions over ellipsoids. Joining these two ideas we obtain
a parametric generative model.

4.1 Simplicial regularization and autoencoders

The richness of the class of neural networks as function approximators given by
Theorem 6 comes at the expense of the need to regularize such kind of functions.
Recent works by Zhang et al. ( ) and Verma et al. ( ) have considered the
regularization induced by convex combinations of latent representations of data
samples. In spite of the successful results, the use of the mixup regularization scheme
is justified heuristically. We now introduce simplicial regularization, a scheme that
arises naturally from our consideration of simplicial complexes and which directly
generalizes mixup regularization.

Recall our definition of a simplicial map. We start with two (geometric) simplicial
complexes K C R" and L € R™ and a function f : K — L. We say f is a simplicial
map if it is “linear under convex combinations on the simplices”. This means we
do not require f to be a (globally) linear transformation, but only to commute
with convex combinations of vertices which form a simplex. Algebraically, if o is a
k-simplex in K, we require that for every convex coefficient vector, A:

k k
f (Z Ajf’?) =Y _Aif(0])
j=1 j=1
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A A WN

In practice, enforcing the equality is not trivial. Thus, we can measure “how far a
given function between the complexes is from being a simplicial map”:

dim() dim(o)
L(f,K,0) = Y Exepir@imne) L £ Do Aol | D Aif(e)) ],
oek j=1 j=1

In the previous equation, Dir(k, «) denotes the symmetric Dirichlet distribution
of order k with density Egz
uniform distribution on the standard (k—1)-simplex. When oo — 0, the distribution is

;“,2 1%, 2271, In the case o = 1, this corresponds to a

very peaked at the corners of the simplex, while for o > 1, the distribution becomes
more dense towards the center of the simplex. In other words, « inversely controls

the level of interpolation which takes place.

However, recall that simplicial maps are the structure-preserving morphisms in the
category of simplicial complexes. Thus, choosing £ as a loss function is equivalent
encouraging the map f to preserve the simplicial structure from K to L.

Algorithm 3: Training of a Simplicial AutoEncoder.

Data: Dataset 9 = {xi}f\il C R™, UMAP parameters 6, maximum iterations iy,ax,
learning rate 7, Dirichlet interpolation coefficients .

Result: Parametric autoencoder trained with a simplicial regularization.

Kq, Ks,% = UMAP(9, 0)

Initialize encoder e and decoder d
forT=1,...,%imax do

le =%(e,Kg,ar)

lg=%(d, Ky, ar)

Gradient step on [, and I, with learning rate
end

We highlight the following aspects from Algorithm 3:

» Since K contains its vertices as 0-simplices, the setting o — 0 corresponds to
the the standard loss on the training set. Also, the framework applies to high
dimensional simplices without any modification.

* It is possible to set up a schedule {« }for the Dirichlet interpolation coefficient
such that o, starts at 0 and increases to 1 with 7. This schedule ensures that the
mapping between the vertices of the simplicial complexes is properly trained
at an early stage and then regularized during future iterations.
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* The training of the encoder and decoder become disentangled and thus, in
principle, possible to execute in parallel.

* Contrary to previous works, we do not mix between random points, but rather
start with the carefully constructed fuzzy topological representation generated
by UMAP and regularize both the encoder and decoder to be approximately
simplicial maps on their corresponding domain simplicial complexes.

* Note that the definition of £ only depends on the domain simplicial complex
and not on the target. The definition of manifold mixup for (semi-)supervised
training by Verma et al. ( ) is clearly particular case of £.

Fig. 4.1: Training inputs sampled from an interpolating Dirichlet distribution with o = 1.

Figure 4.1 shows a subset of a training batch for o« = 1. Since the interpolation is
done on simplices belonging to the fuzzy topological representation of the data, the
resulting inputs are approximately possible variations in the tangent space of the
underlying data manifold at a given point. Intuitively, this regularization can also be
interpreted as a graph-induced data augmentation process.

4.2 Mixture of ellipsoids

One of main differences between simplicial autoencoders and other types of genera-
tive autoencoders, like VAEs, is the lack of probabilistic model for the codes in the
latent space. For this reason, in order to complete our description of a generative
model, we need to define a suitable distribution from which we can draw codes.

Since we assume we already have constructed a representation {z;}%¥ ;, our task is
equivalent to constructing a generative model for low-dimensional data. However,
{2}, was optimized in such a way that its fuzzy simplicial set was close (in the set
of fuzzy set cross entropy) to the fuzzy topological representation of the data.

4.2 Mixture of ellipsoids
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Recall that we defined a custom metric around every point to make sure our unifor-
mity assumption about the distribution of the data on the manifold was valid. Thus,
it should be no surprise that the distribution of {z;}/¥, is in practice approximately
uniform (at least at a connected component-level).

Therefore, we decide to fit a multivariate mixture of Gaussians to the dataset {2;}¥ ,
and then construct a confidence ellipsoid based on each component of the mixture.
The resulting model is a mixture of uniform distributions on each ellipsoid, with
coefficients given by the weights fitted by the mixture of Gaussians.

Consider a p-dimensional Gaussian distribution centered at the origin with
covariance matrix 3. The (1 — «) - 100% confidence ellipsoid is the ellipsoid
centered at ;1 and whose j-th half-axis corresponds to the vector ,/\;x2 ,e;,
where ();,e;) is the j-th eigenpair of X, and Xzzm is the « statistic for a
chi-squared distribution with p degrees of freedom.

In principle one could use any type of generative model, like a GAN or a VAE
to generate codes. However, the mixture of ellipsoids directly exploits the low-
dimensionality and local uniformity on the latent space, and avoids the training and

mode-collapse challenges of GANs.
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Experiments

The above proposition is occasionally useful”.

— Bertrand Russell
(comment after the proof that 1+1=2,
completed in Principia Mathematica)

In this section we display our experimental results. We start with an empirical

verification of the ability of the fuzzy topological representation induced by the

singular functor from UMAP to recover the topological space underlying a random

sample. Next, we illustrate the effect of the simplicial regularization introduced in

the previous section. We then compare the results of UMAP and our parametric

approximation for the MNIST (LeCun et al., ), Fashion MNIST (Xiao et al.,
) and Frey Faces ( ) datasets.

5.1 Inferring topological spaces from samples

As mentioned earlier, even though we do not provide theoretical guarantees for
the fuzzy to converge to the true manifold, we test this conjecture empirically. For
this, we have constructed a fuzzy topological representation for several 1 and 2-
dimensional manifolds embedded in R? and R3, for several numbers of samples.
Figures 5.1 - 5.2 show that in the limit as the number of samples goes to infinity, the
true structure of the underlying manifold is recovered in all of the experiments.

5.2 Simplicial regularization on a synthetic task

We would like to assess the effect of the simplicial regularization on the generaliza-
tion error achieved by models trained with and without it. We start by sampling a
dataset 100 points {x;}% from a 20-dimensional isotropic Gaussian distribution.
Given a radius » = 1.4, we build the Vietoris-Rips complex associated to the dataset.
The Vietoris-Rips complex is similar to the Cech complex mentioned earlier, but
with a slighltly weaker non-emptiness condition. Then we sample a random trans-
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Fig. 5.1: Fuzzy topological representation of 1-dimensional manifolds embedded in R?.

formation T : R?® — R2, and define z; = T(z;). We now have a “labelled” dataset

{(xu Zz) 10%

Note that, in general, {z;} does not form a geometric simplicial complex in R?, see
Figure 5.4. Nevertheless, we would like to find an encoder function which preserves
as much of the simplicial structure of the original complex as possible.

Figure 5.5 shows the performance of the regularized and unregularized encoders.
The use of the simplicial regularization does not affect the performance on the
training set significantly.

However, the behavior on unseen datapoints coming from interpolations inside the
simplicies of the 20-dimensional simplicial complex is drastically different. Figure
5.6 shows the distribution of the generalization error for several tasks. In the
legend, A represents simplicial regularization and the number after the hyphen is
the parameter « of the symmetric Dirichlet distribution used to sample the test set.
Note that difficulty of the generalization task increases with «. We can see that the
regularized models have a better performance, which is statistically significant for
all configurations, according to the p-values in Table 5.1.
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Fig. 5.2: Fuzzy topological representation of 2-dimensional manifolds embedded in R?.
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Fig. 5.3: Fuzzy topological representation of 2-dimensional manifolds embedded in R®. Top
row: torus, bottom row: sphere.
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Fig. 5.4: Random 2-dimensional projection of complex originally embedded in R?°.
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(a) Without simplicial regularization.

Fig. 5.5: Encoding performance on the set of vertices for the encoders with and without

simplicial regularization.
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Fig. 5.6: Effect of simplicial regularization on synthetic random simplicial complex.

Dirichlet Weight Decay Weight Decay + Simplicial | p-value
0.1 (5.820 4 0.087) - 1076 (4.702 4+ 0.072) - 1076 9.76 - 10751
0.5 (6.196 +0.077) - 1076 (4.362 £0.071) - 1076 1.25-1076°

1 (6.384 +0.076) - 1076 (4.242 £0.078) - 1076 5.76 - 107%
5 (6.831 +0.090) - 10~6 (4.218 £0.072) - 1076 7.90-107

Tab. 5.1: Comparison of the generalization error on the synthetic simplicial complex encod-
ing task between a standard encoder and an encoder with a simplicial regulariza-
tion. 95% confidence intervals on 30 trials. The p-value corresponds to a t-test
regarding equality of means between both systems.
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5.3 Real datasets

We now conduct an in-depth exploration of the performance of the proposed methods
for the MNIST dataset. The corresponding results for the Fashion MNIST and Frey
faces datasets can be found in Section 5.5.
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(a) Embedding generated by UMAP. Colors (b) Mixture of ellipsoids on the latent space.
correspond to the true class labels. Colors correspond to the mixture compo-
nent with largest probability.

Fig. 5.7: UMAP embedding and mixture model on MNIST.

Figure 5.7 shows the UMAP-generated embedding and the trained mixture of ellip-
soids. The embedding in Figure 5.7a captures the local structure of each class as a
connected component, as well as the global structure of the manifold by creating
clearly separated clusters. As mentioned before, note how within each connected
component, the distribution of the datapoints in the embedding is approximately
uniform. The fitted mixture of ellipsoids is displayed in Figure 5.7b.
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Fig. 5.8: Parametric approximation to the UMAP embedding.
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Figure 5.8 shows the embedding results of a parametric embedding constituted by
a Simplicial AutoEncoder. The structure of the networks correspond to a neural
network with 1 hidden layer containing 100 units. Note how, overall, the separation
properties of the representation generated by UMAP are preserved. The fact that the
resulting embedding is more noisy than the one in Figure 5.7a is a consequence of
the random initialization, continuity and bounded capacity of the encoder.

Figure 5.9 shows the manifold learned by our generative model. In this pictures the
strength of each grid point is determined by the density/membership according to
the corresponding model. In particular, the adversarial density model was trained to
predict the membership of every point in the fuzzy simplicial complex constructed
from the embedding.
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(a) The strength of each image is proportional (b) The strength of each image is proportional
to its density under the mixture model. to the adversarially learned membership.
Compare colors with Figure 5.7b.

Fig. 5.9: Learned MNIST manifold.
In Figure 5.10 we show generated samples for each of the datasets and in Figure

5.11 we show the effect of increasing the dimension of the latent space in the quality
of the generated samples.

Figure 5.12 shows linear interpolations between MNIST digits. For this, we create a

sequence of evenly spaced points between the codes corresponding to the endpoints,
and then project them to the data space using the decoder.
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(a) MNIST (b) Fashion MNIST (c) Frey faces

Fig. 5.10: Generated samples for several datasets using a mixture of ellipsoids model on a
2-dimensional latent space.
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(a) 2-dim latent space (b) 5-dim latent space (c) 10-dim latent space

Fig. 5.11: Generated MNIST samples for several dimensionalities of the latent space.

E=00 t=0077t=0154t=0231t=0308t=0385t=0462t=0538t=0615t=0692t=0769 t=0846 t=0923
t=00 t=0077t=0154t=0231t=0308t=03851t=0462t=0538t=0615t=0692t=0.769 t=02846 t=00923

£=00 t=0077t=0154t=0231t=0308t=0385t=0462t=0538t=0615t=0692t=0.769 t=0.846 t=00923

A dddadadadidLldle

Fig. 5.12: Linear interpolation between samples on MNIST.

Given that we have a representation of the topological space as a fuzzy graph,
we can examine an approximation to the geodesic distance between two points by
considering shortest paths on the graph between said points. This has two advantages
with respect to the linear interpolation: every point in our interpolating path is an
actual sample; and whenever points are in different connected components, no
interpolating path exists, i.e., interpolation between classes which are not linked is
forbidden. For instance, interpolating between a zero and a one is impossible, while
there might exist a path between a four and a nine, according to the embedding in
Figure 5.7.
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Fig. 5.13: Approximate geodesic interpolation on MNIST.

For the particular example above, we can observe the geodesic path on the graph in
Figure 5.14. Starting point (¢ = 0) is blue and endpoint (¢ = 1) is red. The figure on
the right shows the membership of every edge corresponding to a transition between
samples at every time step.
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(a) Interpolation path on the latent space.  (b) Strength of the edge for each transition.

Fig. 5.14: Path of an approximate geodesic interpolation on MNIST.

5.4 Cut-induced compositional representation

Recall how cuts of the membership function played a major role in the construction of
our random variables in the theoretical section before. If we consider a sequence of
cuts to the 1-skeleton of a fuzzy simplicial complex, performed by deleting edges with
membership less than the value of the threshold, we get a hierarchical fragmentation
of the original connected components.

The interesting aspect of this sequence of cuts is that, in practice, they induce a sense

of compositionality in the learned representation. Let us see this in idea in practice
for the case of the Fashion MNIST dataset.
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(a) Membership cut: 0
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(c) Membership cut: 0.47

Fig. 5.15: Compositionality arises naturally by cut-induced connected components.

In Figure 5.15a we have the initial fuzzy simplicial complex. We observe 4 major con-

nected components: trousers, footwear, bags, shirts/pullovers and t-shirts/dresses.

When we make the first cut at 0.25, some new small components appear: orange

sandals and yellow bags. At 0.47, the big connected component of shirts/dresses

breaks into three components: t-shirts, long sleeve dresses, and sleeve-less dresses.

Similarly, at 0.5, we get a separation of footwear in 3 connected components: blue

sandals, bluegreen sports shoes and red formal footwear. The bags also get separated

between those with and without handle.
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5.5 Complementary results

Fashion MNIST
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(a) Embedding generated by UMAP.

(b) Mixture of ellipsoids on the latent space.

Fig. 5.16: UMAP embedding and mixture model on MNIST.

(a) Mixture of ellipsoids, c.f. Figure 5.16b.

Fig. 5.17: Learned Fashion MNIST manifold.
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(b) Adversarially learned density.



Frey Faces
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(a) Embedding generated by UMAP. (b) Mixture of ellipsoids on the latent space.

Fig. 5.18: UMAP embedding and mixture model on MNIST.
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(a) Mixture of ellipsoids, c.f. Figure 5.18b.  (b) Adversarially learned density.

Fig. 5.19: Learned Frey faces manifold.
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Linear Interpolations
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Fig. 5.20: Linear interpolation between samples on Fashion MNIST.
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Fig. 5.21: Linear interpolation between samples on the Frey faces dataset.
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Conclusions and Future Work

‘The surprising thing about this paper is that a
man who could write it-would’”.

— John Littlewood
(repeating a joke without attribution)

We have presented the construction of an embedding proposed by UMAP as an
approximate maximum a posteriori estimator. This is a step in the direction of a
theory of unsupervised learning which unifies geometric and probabilistic methods.

We showed how the notion of structure preservation between simplicial complexes
gives rise to Simplicial AutoEncoders. By adjoining the construction of a mixture
of ellipsoids, we turned the non-parametric embedding of UMAP into a generative
model and tested it successfully against several datasets.

A fully Bayesian treatment would require our ability to asses uncertainty by “inte-

grating out” the parameter, i.e., the random simplicial complex. A refinement of
our Lagrangian or a more tangible construction of a prior would be a useful step
towards a complete Bayesian analysis of UMAP.

The membership of high-dimensional simplices in a fuzzy simplicial set depends on a
particular choice of a t-norm. An adequate choice and a formalization of the notion
of fuzzy Vietoris-Rips complex could lead to a result which guarantees homotopic
equivalence between the fuzzy topological representation constructed by UMAP and
the topological space underlying the sample points.
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