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Faculté des arts et des sciences

Rapport pour la partie orale
de l’examen pré-doctoral
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1 Introduction

Shannon’s seminal theory of information (1948) has been of paramount im-

portance in the development of modern machine learning techniques. However,

standard information measures deal with probability distributions over an alphabet

considered as a mere set of symbols and disregard additional geometric structure,

which might be available in the form of a metric or similarity function. As a

consequence of this, information theory concepts derived from the Shannon entropy

(such as cross entropy and the Kullback-Leibler divergence) are usually blind to the

geometric structure in the domains over which the distributions are defined.

The development of machine learning and information theory as scientific disci-

plines has been strongly intertwined. Compiling an exhaustive collection of research

at the intersection between these two fields might be as ambitious as reviewing

those machine learning paper that make use of differential calculus. Among several

important landmarks, both old and new, we find the use of information gain (in the

sense of the Kullback-Leibler divergence) to measure the importance of attributes

in decision trees (Quinlan, 1986); approximate second order optimization based

on natural gradient descent (Amari, 1998); the information bottleneck framework

for learning representations (Tishby and Zaslavsky, 2015; Tishby et al., 2000; Saxe

et al., 2018); a rate-distortion analysis of variational autoencoders (Alemi et al.,

2018); regularization based on entropy to model exploration in reinforcement learn-

ing (Haarnoja et al., 2017), the estimation of mutual information between high

dimensional continuous random variables via optimizing neural networks Belghazi

et al. (2018); and the measurement of information about a learning task stored in

the weights of a neural network after training (Achille et al., 2019).

The blindness of Shannon’s concepts to existent geometric structure limits their

applicability. For example, the Kullback-Leibler divergence cannot be optimized for

empirical measures with non-matching supports. Optimal transport distances, such

as Wasserstein, have emerged as practical alternatives with theoretical grounding.

These methods have been used to compute barycenters (Cuturi and Doucet, 2014)

1



and train generative models (Genevay et al., 2018). However, optimal transport is

computationally expensive as it generally lacks closed-form solutions and requires

the solution of linear programs or the execution of matrix scaling algorithms, even

when solved only in approximate form (Cuturi, 2013). Approaches based on kernel

methods (Gretton et al., 2012; Li et al., 2017; Salimans et al., 2018), which take a

functional analytic view on the problem, have also been widely applied. However,

further exploration on the interplay between kernel methods and information theory

is lacking.

In spite of all the abundant connections between the fields, there is scarce work

on creating a geometric approach to information theory that resolves some of the

mentioned difficulties. The main contributions of this work are as follows: we i)

introduce to the machine learning community a similarity-sensitive definition of

entropy developed by Leinster and Cobbold (2012). Based on this notion of entropy

we ii) propose geometry-aware counterparts for several information theory concepts.

We iii) present a novel notion of divergence which incorporates the geometry of the

space when comparing probability distributions, as in optimal transport. However,

while the former methods require the solution of an optimization problem or a

relaxation thereof via matrix-scaling algorithms, our proposal enjoys a closed-form

expression and can be computed efficiently.

We present this collection of ideas as a first step towards a geometric theory of

information.
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2 Background

In this section we provide a brief presentation of the main theoretical notions

used in our work. We start by summarizing Shannon’s theory of information.

Then, we use the concept of convexity to define Bregman divergences and how this

relates to Shannon’s mutual information. Finally, we discuss the optimal transport

framework to compare probability distributions and the formulation of generative

models as a divergence minimization problem.

Notation. Calligraphic letters denote Sets, bold letters represent Matrices and

vectors, and double-barred letters denote Probability distributions and information-

theoretic functionals. To emphasize certain computational aspects, we alternatively

denote a distribution P over a finite space X as a vector of probabilities p. I,

1 and J denote the identity matrix, a vector of ones and matrix of ones, with

context-dependent dimensions. For vectors v, u and α ∈ R, v
u

and vα denote

element-wise division and exponentiation. 〈·, ·〉 denotes the Frobenius inner-product

between two vectors or matrices. ∆n , {x ∈ Rn| 〈1,x〉 = 1 and xi ≥ 0} denotes

the probability simplex over n elements. δx denotes a Dirac distribution at point

x. We adopt the conventions 0 · log(0) = 0 and x log(0) = −∞ for x > 0. For a

continuous map f : X→ Y and a measure P on X, f#P, denotes the push-forward

measure of P induced by f over Y, with samples obtained by applying f on x ∼ P.

2.1 Information Theory

This section introduces key notions of information theory that are relevant

for our work, such as (conditional) entropy and mutual information. We do not

aim to provide a comprehensive overview of this subject, and direct the interested

reader to the excellent books by Cover and Thomas (2005) and MacKay (2003).
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Complementary definitions and proofs for the theorems in this section can be found

in the mentioned references as well as the foundational work of Shannon (1948).

Consider a random variable X over a discrete alphabet of symbols X =

{x1, . . . , x|X|} characterized by a probability mass function p(x) , P(X = x).

We are interested in defining a notion of the “information” gained when we observe

a realization x of the random variable X, denoted by I(x). Such a notion can be

uniquely derived from the following set of axioms:

(I1) No information is gained from a “sure” event x for which p(x) = 1.

(I2) The observation of unlikely events provides more information.

(I3) The total amount of information learned from two independent events is the

sum of the information gained from each of the individual events.

Theorem 1. (Information Content) Up to a multiplicative constant, there exists

only one function satisfying axioms (I1)-(I3). The information content of an event

x is given by:

IX(x) , − log(p(x)) (2.1)

This point-wise concept can be extended to the random variable X itself yielding

one of the central concepts in information theory:

Definition 1. (Shannon, 1948) (Shannon Entropy) The entropy of a random

variable X is given by its expected information content.

H[X] , −
∑
x∈X

p(x) log(p(x)) = −Ex∼X [log(p(x))] = Ex∼X [IX(x)] (2.2)

Note that the definitions in Thm. 1 and Def. 1 only depend on the outcome x

via its probability mass. Therefore, these quantities are invariant with respect to

injective transformations on the alphabet X. Formally, let Y be a discrete alphabet

and f : X → Y be an injective function. Then, the random variable Y = f(X)

satisfies H[Y ] = H[X].

Example. The entropy of a Bernoulli process with parameter p is given by the

binary entropy function Hb(p) = −p log(p)− (1− p) log(1− p). This is illustrated

in Fig. 2.1.
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The Shannon entropy naturally encodes the uncertainty on the realizations of a

random variable. Clearly, whenever there is a sure event p(x∗) = 1, H[X] = 0, and

it attains maximum uncertainty whenever X is uniformly distributed. Compare

this to the behavior for the Bernoulli process in Fig. 2.1.

p

H
b
(p

)

Figure 2.1 – Binary entropy function.

Remarkably, in a fashion analogous to the axiomatic characterization provided

for the information content, the entropy of a random variable is the only function

satisfying:

(E1) H should be continuous in the probabilities p(x).

(E2) If X is uniformly distributed over an alphabet X, then H, should be a mono-

tonic increasing function of |X|.

(E3) If a choice is broken down into two successive choices, the original entropy

should be the weighted sum of the individual entropies.

In fact, there exist many different characterizations of information measures.

We refer the reader to the works of Csiszár (2008) and Aczél and Daróezy (1975)

for a review, as well as Baez et al. (2011) for an elegant perspective in the language

of category theory.

Def. 1 can accommodate for more general random variables, as well as standard

operations between them such as conditioning.

Definition 2. (Joint Entropy) The joint entropy of a pair of random variables

X and Y taking values on the discrete alphabets X and Y is the entropy of their

joint distribution considered as a random variable over the alphabet X× Y.

H[X, Y ] , −
∑
x∈X

∑
y∈Y

p(x, y) log(p(x, y)) (2.3)
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Definition 3. (Conditional Entropy) Let (X, Y ) have joint distribution p(x, y).

The conditional entropy of Y given X is defined as:

H[Y |X] ,
∑
x∈X

p(x)H[Y |X = x] = −
∑

(x,y)∈X×Y

p(x, y) log(p(y|x)) (2.4)

The previous two definitions are tied together in what is often referred to as the

“chain rule” of entropy. Thm. 2 relates the amount of information that is needed

on average to describe the exact state of a system of two variables with the excess

information unaccounted for after the observation of only one of the variables.

Theorem 2. (Chain Rule)

H[X, Y ] = H[X] + H[Y |X] = H[Y ] + H[X|Y ] (2.5)

2.2 Convex Spaces

The entropy operator defined in the previous section acts naturally on the simplex

comprising all possible categorical distributions over the discrete alphabet X, which

is a convex space. In this section we introduce some concepts of convex analysis. In

particular, we highlight the fact that the Shannon entropy is a concave function on

the simplex and the construction of Bregman divergences based on strictly convex

functions. The books of Rockafellar (1970) and Boyd and Vandenberghe (2004)

provide detailed information on convex analysis and optimization, respectively.

Definition 4. (Convex Set) Let V be a vector space over some ordered field. A

subset of C of V is called convex if for all u, v ∈ C, and for all λ ∈ [0, 1],

(1− λ)u+ λv ∈ C (2.6)

Example. By construction, the simplex spanned by all possible convex combinations

of elements of the standard basis of R|X| is a convex set.
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Definition 5. (Convex Function) Let f : C ⊂ V→ R be a function and define

its epigraph by:

epi(f) , {(v, t) ∈ C× R | f(v) ≤ t} (2.7)

We say that the function f is convex if epi(f) is a convex set, with C × R
equipped with the natural addition. A function f is called concave if −f is convex.

There exist many equivalent definitions of functional convexity. In particular, it

is easy to see that Def. 5 is equivalent to requiring that for all u, v ∈ C, and for all

λ ∈ [0, 1],

f((1− λ)u+ λv) ≤ (1− λ)f(u) + λf(v). (2.8)

The associated notions of strong convexity and strong concavity are obtained by

requiring a strict inequality in Eq. (2.8) and suitably restricting the possible input

and weighting parameter.

The convexity of once and twice differentiable functions can be characterized

based solely on the local information provided by their derivatives.

Theorem 3. Let f be a differentiable function and g twice differentiable defined on

C ⊂ Rd. f is convex on C if and only if for all p, q ∈ C,

f(p)− f(q)−∇qf(q)>(p− q) ≥ 0 (2.9)

Moreover, g is convex on C if and only if the Hessian ∇2
ug(u) is positive semidefinite

for all u ∈ C.

Note that the first order condition in Eq. (2.9) stipulates that the local tangential

approximation to f is a global lower bound. The calculus perspective on convexity

allows us to provide a succinct proof of the concavity of the Shannon entropy.

Theorem 4. The Shannon entropy H[p] is a strictly concave function of the

probability vector p.

Proof. The Hessian of the entropy with respect to p in the interior of the simplex

is given by the negative definite matrix ∇2
pH[p] = −diag(p)−1.

Another consequence of Eq. (2.9) is that it suggests a measurement of the

separation between the points p and q based on how much the function f diverges

from its tangential approximation at q.
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Definition 6. (Bregman, 1967) (Bregman Divergence) Let ψ be a real-valued,

continuously-differentiable, strictly convex function on a closed convex set C. The

Bregman divergence from p to q ∈ C induced by the function ψ is given by:

Dψ[p || q] = ψ(p)− ψ(q)−∇qψ(q)>(p− q) (2.10)

Bregman divergences are related to the notion of metric. However, the symmetry

and triangle inequality conditions are not satisfied in general. The non-negativity

and identifiability are consequences of the strict convexity of the inducing function

ψ. Moreover, Dψ[p || q] is convex in p and linear in ψ.

Definition 7. (Kullback and Leibler, 1951) (Kullback-Leibler Divergence) The

Kullback-Leibler (KL) divergence between two distributions P and Q on an alphabet

X is given by:

KL[P ||Q] ,
∑
x∈X

p(x) log

(
p(x)

q(x)

)
(2.11)

Example. Recall that the Shannon entropy is a strictly concave function. The KL

divergence is the Bregman divergence induced by the negative Shannon entropy.

Definition 8. (Mutual Information) The mutual information between two ran-

dom variables X and Y with joint distribution p(x, y) is defined as the KL divergence

between the joint distribution p(x, y) and its independent factorization.

I[X;Y ] , KL[p(X, Y ) || p(X)⊗ p(Y )] (2.12)

The identifiability property of the Bregman divergences implies that the mutual

information between X and Y is a measure of their statistical dependence. In

particular, I(X;Y ) is zero precisely whenX and Y are independent random variables.

The mutual information has important connections to the definitions of entropy

presented earlier:

Theorem 5.

I[X;Y ] = H[X, Y ]−H[X|Y ]−H[Y |X] (2.13)

Intuitively, the average reduction in the uncertainty about Y (X) that takes

place by knowing the value of X (Y ) is quantified by their mutual information.
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An important theoretical result of this definition of mutual information is the

data processing inequality. Informally, it states that “no clever manipulation of

the data can improve the inferences that can be made from the data” (Cover and

Thomas, 2005).

Theorem 6. (Data Processing Inequality) Let X → Y → Z form a Markov

chain. In other words, Z is conditionally independent of Y given X.

I[X;Y ] ≥ I[X;Z] (2.14)

2.3 Generative Models

Consider the problem of approximating the distribution of a random variable

X defined on a space X via a stochastic generation mechanism, f : Z → X, that

transforms samples from a base random variable Z into an approximate sample

X̂ = f(Z) of the distribution X. The most popular incarnations of this problem

are related to families of explicit-probabilistic (Kingma and Welling, 2014) or

implicit-adversarial (Goodfellow et al., 2014) generative models.

Although there is a vast literature regarding the implications of the adversarial

formulation of this task in terms of the optimization dynamics, we center our

attention to the general framework of generative modelling as a problem of divergence

minimization. Formally, given a statistical distance of divergence D that quantifies

the separation between two distributions, we aim to find an adequate configuration

of the parameters of a transformation fθ such that D[X, fθ#Z] is small.

We have mentioned the Kullback-Leibler as an example of a statistical divergence.

Arjovsky et al. (2017) provide a theoretical analysis of the topology induced by the

KL divergence in the space of probability distributions, and use insights derived

from such analysis to advocate for the use of distances based on optimal transport

to train generative models. The theory of optimal transport, reviewed extensively

in the work of Villani (2008), is based on the fundamental notion of a coupling

between random variables:

Definition 9. (Coupling) Let X and Y be two random variables on the spaces

X and Y, respectively. Let PX×Y be the set of all joint distributions on X× Y. An
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element π ∈ PX×Y is called a coupling of X and Y if its marginals coincide with

X and Y , respectively. The set of all couplings between X and Y is denoted by

Π(X, Y ).

Equivalently, π ∈ Π(X, Y ) if and only if:∫
X×Y

π(x, y)dy = p(x) and

∫
X×Y

π(x, y)dx = p(y)

When X and Y are finite spaces of sizes n and m, the couplings correspond to

matrices π ∈ [0, 1]n×m such that π1m = p(X) and 1nπ = p(Y ). Thus, Π(X, Y ) is a

polytope in Rn×m.

The Wasserstein distance between two random variables X and Y corresponds

to the solution of a (possibly infinitely dimensional) linear program on the space

Π(X, Y ).

Definition 10. (Wasserstein, 1969) (Wasserstein Distance) Let X and Y be

two random variables on a metric space (X, d). For p ≥ 1, the p-th Wasserstein

distance between X and Y is defined as:

Wp(X, Y ) = inf
π∈Π(X,Y )

(
E(x,y)∼π[dp(x, y)]

)1/p
= inf

π∈Π(X,Y )
〈π, dp〉1/p, (2.15)

where the 〈π, d〉 is the Frobenius product between the coupling π and a matrix

representation of the distance d.

The definition of this statistical distance as a linear program presents a number

of computational challenges. Arjovsky et al. (2017) provide a practical adversarial

algorithm via the celebrated Kantorovich-Rubinstein duality (Kantorovich and

Rubinstein, 1958). Cuturi (2013) presents an approach based on an entropic

regularization of the linear objective in Eq. (2.15) and obtains a statistical distance

which can be computed through Sinkhorn’s matrix scaling iterations at a speed

that is several orders of magnitude faster than that of transport solvers. Follow

up works refine these ideas to the computation of barycenters between probability

distributions (Cuturi and Doucet, 2014) and the training of generative models

(Genevay et al., 2018).
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3 Geometric Information
Theory

Prologue

GAIT: A Geometric Approach to Information Theory. Jose Gallego,

Ankit Vani, Max Schwarzer and Simon Lacoste-Julien. Proceedings of the 23rd

International Conference on Artificial Intelligence and Statistics (AISTATS), 2020.
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similarity sensitive notion of entropy to the machine learning community, definition

of the Bregman-based divergence and other information theoretical concepts. JG

was also in charge of the writing of the paper and proofs. AV and MS contributed

on the design and execution of the experiments, as well as proofs for certain theo-

rems. SLJ supervised this project and developed a proof for the conjecture in the

2-dimensional case.
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this work.

Reproducibility. Our experimental results can be reproduced via: https://

github.com/jgalle29/gait
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3.1 A Geometry-Aware Approach

Suppose that we are given a finite space X with n elements along with a symmetric

function that measures the similarity between elements, κ : X × X → [0, 1]. Let

K be the Gram matrix induced by κ on X; i.e, Kx,y , κxy , κ(x, y) = κ(y, x).

Kx,y = 1 indicates that the elements x and y are identical, while Kx,y = 0 indicates

full dissimilarity. We assume that κ(x, x) = 1 for all x ∈ X. We call (X, κ) a (finite)

similarity space. For brevity we denote (X, κ) by X whenever κ is clear from the

context.

Of particular importance are the similarity spaces arising from metric spaces.

Let (X, d) be a metric space and define κ(x, y) , e−d(x,y). Here, the symmetry and

range conditions imposed on κ are trivially satisfied. The triangle inequality in

(X, d) induces a multiplicative transitivity on (X, κ): for all x, y, z ∈ X, κ(x, y) ≥
κ(x, z)κ(z, y). Moreover, for any (non-degenerate) metric space, the Gram matrix

of its associated similarity space is positive definite (Reams, 1999, Lemma 2.5).

Note that there is an implicit choice of scale in the basis of the exponent in the

definition of the similarity function. In fact, for each metric space we have a family

of similarity spaces indexed by a scale parameter σ: define κσ(x, y) , e−
d(x,y)
σ . This

is a central concept in the theory of the magnitude (a refined notion of size) of a

metric space developed in (Leinster, 2013).

In this section, we present a theoretical framework which quantifies the“diversity”

or “entropy” of a probability distribution defined on a similarity space, as well as a

notion of divergence between such distributions.

3.1.1 Entropy and diversity

Let P be a probability distribution on X. P induces a similarity profile KP : X→
[0, 1], given by KP(x) , Ey∼P [κ(x, y)] = (Kp)x.

1 KP(x) represents the expected

similarity between element x and a random element of the space sampled according

to P. Intuitively, it assesses how “satisfied” we would be by selecting x as a one-point

summary of the space. In other words, it measures the ordinariness of x, and thus
1

KP(x)
is the rarity or distinctiveness of x (Leinster and Cobbold, 2012). Note that

the distinctiveness depends crucially on both the similarity structure of the space

and the probability distribution at hand.

1This denotes the x-th entry of the result of the matrix-vector multiplication Kp.
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Figure 3.1 – HK
1 interpolates

towards the Shannon entropy as
r →∞.

A

B

C

1

0.7

0.1

1

1

0.1

Figure 3.2 – A 3-point
space with two highly sim-
ilar elements.

Figure 3.3 – HK
1 for distri-

butions over the space in Fig.
3.2.

Much like the interpretation of Shannon’s entropy as the expected surprise

of observing a random element of the space, we can define a notion of diversity

as expected distinctiveness: ∑
x∈X P(x)

1
KP(x)

. This arithmetic weighted average is a

particular instance of the family of power (or Hölder) means. Given w ∈∆n and

x ∈ Rn
≥0, the weighted power mean of order β is defined as Mw,β(x) ,

〈
w,xβ

〉 1
β .

Motivated by this averaging scheme, Leinster and Cobbold (2012) proposed the

following definition:

Definition 11. (Leinster and Cobbold, 2012) (GAIT Entropy) The GAIT entropy

of order α ≥ 0 of distribution P on finite similarity space (X, κ) is given by:

HK
α [P] , logMp,1−α

(
1

Kp

)
=

1

1− α
log

n∑
i=1

pi
1

(Kp)1−α
i

. (3.1)

It is evident that whenever K = I, this definition reduces to the Rényi entropy

(Rényi, 1961). Moreover, a continuous extension of Eq. (3.1) to α = 1 via a

L’Hôpital argument reveals a similarity-sensitive version of Shannon’s entropy:

HK
1 [P] = −〈p, log(Kp)〉 = −Ex∼P[log(KP)x]. (3.2)

Let us dissect this definition via two simple examples. First, consider a dis-

tribution pθ = [θ, 1 − θ]> over the points {x, y} at distance r ≥ 0, and define

the similarity κxy , e−r. As the points get further apart, the Gram matrix Kr

transitions from J to I. Fig. 3.1 displays the behavior of HKr
1 [pθ]. We observe

that when r is large we recover the usual shape of Shannon entropy for a Bernoulli

variable. In contrast, for low values of r, the curve approaches a constant zero
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function. In this case, we regard both elements of the space as identical: no matter

how we distribute the probability among them, we have low uncertainty about the

qualities of random samples. Moreover, the exponential of the maximum entropy,

exp
[
supθHKr

1 [pθ]
]

= 1 + tanh(r) ∈ [1, 2], measures the effective number of points

(Leinster and Meckes, 2016) at scale r.

Now, consider the space presented in Fig. 3.2, where the edge weights denote

the similarity between elements. The maximum entropy distribution in this space

following Shannon’s view is the uniform distribution u = [1
3
, 1

3
, 1

3
]>. This is counter-

intuitive when we take into account the fact that points A and B are very similar.

We argue that a reasonable expectation for a maximum entropy distribution is one

which allocates roughly probability 1
2

to point C and the remaining mass in equal

proportions to points A and B. Fig. 3.3 displays the value of HK
1 for all distributions

on the 3-simplex. The green dot represents u, while the black star corresponds to

the maximum GAIT entropy with [A, B, C]-coordinates p∗ , [0.273, 0.273, 0.454]>.

The induced similarity profile is Kp∗ = [1
2
, 1

2
, 1

2
]>. Note how Shannon’s probability-

uniformity gets translated into a constant similarity profile.

Properties. We now list several important properties satisfied by the GAIT

entropy, whose proofs and formal statements are contained in (Leinster and Cobbold,

2012) and (Leinster and Meckes, 2016):

• Range: 0 ≤ HK
α [P] ≤ log(|X|).

• K-monotonicity: Increasing the similarity reduces the entropy. Formally, if

κxy ≥ κ′xy for all x, y ∈ X, then HJ
α[P] ≤ HK

α [P] ≤ HK′
α [P] ≤ HI

α[P].

• Modularity: If the space is partitioned into fully dissimilar groups, (X, κ) =⊗C
c=1(Xc, κc), so that K is a block matrix (x ∈ Xc, y ∈ Xc′ , c 6= c′ ⇒ κxy = 0),

then the entropy of a distribution on X is a weighted average of the block-wise

entropies.

• Symmetry: Entropy is invariant to relabelings of the elements, provided

that the rows of K are permuted accordingly.

• Absence: The entropy of a distribution P over (X, κ) remains unchanged

when we restrict the similarity space to the support of P.

• Identical elements: If two elements are identical (two equal rows in K),
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then combining them into one and adding their probabilities leaves the entropy

unchanged.

• Continuity: HK
α [P] is continuous in α ∈ [0,∞] for fixed P, and continuous

in P (w.r.t. standard topology on ∆) for fixed α ∈ (0,∞).

• α-Monotonicity: HK
α [P] is non-increasing in α.

The role of α. Def. 11 establishes a family of entropies indexed by a non-

negative parameter α, which determines the relative importance of rare elements

versus common ones, where rarity is quantified by 1
KP . In particular, HK

0 [P] =

log
〈
p, 1

Kp

〉
. When K = I, HK

0 [P] = log |supp(P)|, which values rare and common

species equally, while HK
∞[P] = − log maxi∈supp(p)(Kp)i only considers the most

common elements. Thus, in principle, the problem of finding a maximum entropy

distribution depends on the choice of α.

Theorem 7. (Leinster and Meckes, 2016) Let (X, κ) be a similarity space. There

exists a probability distribution P∗X that maximizes HK
α [·] for all α ∈ R≥0, simultane-

ously. Moreover, H∗X , sup
P∈∆|X|

HK
α [P] does not depend on α.

Remarkably, Thm. 7 shows that the maximum entropy distribution is indepen-

dent of α and thus, the maximum value of the GAIT entropy is an intrinsic property

of the space: this quantity is a geometric invariant. In fact, if κ(x, y) , e−d(x,y) for

a metric d on X, there exist deep connections between H∗X and the magnitude of

the metric space (X, d) (Leinster, 2013).

Theorem 8. (Leinster and Meckes, 2016) Let P be a distribution on a similarity

space (X, κ). HK
α [P] is independent of α if and only if KP(x) = KP(y) for all

x, y ∈ supp(P).

Recall the behavior of the similarity profile observed for p∗ in Fig. 3.2. Thm.

8 indicates that this is not a coincidence: inducing a similarity profile which is

constant over the support of a distribution P is a necessary condition for P being

a maximum entropy distribution. In the setting α = 1 and K = I, the condition

Kp = p = λ1 for some λ ∈ R≥0, is equivalent to the well known fact that the

uniform distribution maximizes Shannon entropy.
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3.1.2 Concavity of HK
1 [·]

A common interpretation of the entropy of a probability distribution is that of

the amount of uncertainty in the values/qualities of the associated random variable.

From this point of view, the concavity of the entropy function is a rather intuitive

and desirable property: “entropy should increase under averaging”.

Consider the case K = I. HI
α[·] reduces to the the Rényi entropy of order α. For

general values of α, this is not a concave function, but rather only Schur-concave (Ho

and Verdú, 2015). However, HI
1[·] coincides with the Shannon entropy, which is

a strictly concave function. Since the subsequent theoretical developments make

extensive use of the concavity of the entropy, we restrict our attention to the case

α = 1 for the rest of the paper.

To the best of our knowledge, whether the entropy HK
1 [P] is a (strictly) concave

function of P for general similarity kernel K is currently an open problem. Although

a proof of this result has remained elusive to us, we believe there are strong indicators,

both empirical and theoretical, pointing towards a positive answer. We formalize

these beliefs in the following conjecture:

Conjecture 1. Let (X, κ) be a finite similarity space with Gram matrix K. If K is

positive definite and κ satisfies the multiplicative triangle inequality, then HK
1 [·] is

strictly concave in the interior of ∆|X|.

Figure 3.4 – Left: The entropy HK
1 [(1−θ)q+θp] is upper-bounded by the linear approximation

at q, given by HK
1 [q] + θ

〈
∇qHK

1 [q], p− q
〉
. Right: Optimal Gaussian model under various

divergences on a simple mixture of Gaussians task under an RBF kernel. W1 denotes the
1-Wasserstein distance.

Fig. 3.4 shows the relationship between the linear approximation of the entropy

and the value of the entropy over segment of the convex combinations between two

measures. This behavior is consistent with our hypothesis on the concavity of HK
1 [·].
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We emphasize the fact that the presence of the term log(Kp) complicates the

analysis, as it incompatible with most linear algebra-based proof techniques, and it

renders most information theory-based bounds too loose, as we explain in App A.3.

Nevertheless, we provide extensive numerical experiments in App. A.3 which support

our conjecture. In the remainder of this work, claims dependent on this conjecture

are labelled ♣.

3.1.3 Comparing probability distributions

The previous conjecture implies that −HK
1 [·] is a strictly convex function. This

naturally suggests considering the Bregman divergence induced by the negative

GAIT entropy. This is analogous to the construction of the Kullback-Leibler

divergence as the Bregman divergence induced by the negative Shannon entropy.

Straightfoward computation shows that the gap between the negative GAIT

entropy at p and its linear approximation around q evaluated at p is:

−HK
1 [p]−

[
−HK

1 [q] +
〈
−∇qHK

1 [q], p− q
〉]

= 1+

〈
p, log

Kp

Kq

〉
−
〈

q,
Kp

Kq

〉
(Conj. 1)

≥ 0.

Definition 12. (GAIT Divergence)♣ The GAIT divergence between distributions

P and Q on a finite similarity space (X, κ) is given by:

DK[P ||Q] , 1 + EP

[
log

KP
KQ

]
− EQ

[
KP
KQ

]
. (3.3)

When K = I, the GAIT divergence reduces to the Kullback-Leibler divergence.

Compared to the family of f -divergences (Csiszár and Shields, 2004), this definition

computes point-wise ratios between the similarity profiles KP and KQ rather

than the probability masses (or more generally, Radon-Nikodym w.r.t. a reference

measure). We highlight that KP(x) provides a global view of the space via the

Gram matrix from the perspective of x ∈ X. Additionally, the GAIT divergence

by definition inherits all the properties of Bregman divergences. In particular,

DK[P ||Q] is convex in P.

Forward and backward GAIT divergence. Like the Kullback-Leibler di-

vergence, the GAIT divergence is not symmetric and different orderings of the

arguments induce different behaviors. Let Q be a family of distributions in which

we would like to find an approximation Q to P /∈ Q. arg minQDK[· ||P] concentrates
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around one of the modes of P; this behavior is known as mode seeking. On the other

hand, arg minQ DK[P || ·] induces a mass covering behavior. Fig. 3.4 displays this

phenomenon when finding the best (single) Gaussian approximation to a mixture

of Gaussians.

Empirical distributions. Although we have developed our divergence in the

setting of distributions over a finite similarity space, we can effectively compare two

empirical distributions over a continuous space. Note that if an arbitrary x ∈ X

(or more generally a measurable set E for a given choice of σ-algebra) has measure

zero under both µ and ν, then such x (or E) is irrelevant in the computation of

DK[P ||Q]. Therefore, when comparing empirical measures, the possibly continuous

expectations involved in the extension of Eq. (12) to general measures reduce to

finite sums over the corresponding supports.

Concretely, let (X, κ) be a (possibly continuous) similarity space and consider

the empirical distributions P̂ =
∑n

i=1 piδxi and Q̂ =
∑m

j=1 qjδyi with p ∈ ∆n and

q ∈ ∆m. The Gram matrix of the restriction of (X, κ) to S , supp(P) ∪ supp(Q)

has the block structure KS ,

(
Kxx Kxy

Kyx Kyy

)
, where Kxx is n×n, Kyy is m×m and

Kxy = K>yx. It is easy to verify that

DK[P̂ || Q̂] = 1 +

〈
p, log

Kxxp

Kxyq

〉
−
〈

q,
Kyxp

Kyyq

〉
. (3.4)

Computational complexity. The computation of Eq. (3.4) requires O(|κ|(n+

m)2) operations, where |κ| represents the cost of a kernel evaluation. This exhibits

a quadratic behavior in the size of the union of the supports, typical of kernel-based

approaches (Li et al., 2017). We highlight that Eqs. (12) and (3.4) provide a

quantitative assessment of the dissimilarity between P and Q via a closed form

expression. This is in sharp contrast to the multiple variants of optimal transport

which require the solution of an optimization problem or the execution of several

iterations of matrix scaling algorithms. Moreover, the proposals of Cuturi and

Doucet (2014); Benamou et al. (2014) require at least Ω((|κ|+ L)mn) operations,

where L denotes the number of Sinkhorn iterations, which is an increasing function

of the desired optimization tolerance. A quantitative comparison is presented in

App. A.4.4.

Weak topology. The type of topology induced by a divergence on the space of
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probability measures plays important role in the context of training neural generative

models. Several studies (Arjovsky et al., 2017; Genevay et al., 2018; Salimans et al.,

2018) have exhibited how divergences which induce a weak topology constitute

learning signals with useful gradients. In App. A.1, we provide an example in which

the GAIT divergence can provide a smooth training signal despite being evaluated

on distribution with disjoint supports.

Relation to Conj. 1 Thm. 9 displays the structure of the Hessian of the

GAIT entropy. This is a straightfoward computation based on Def. 12.

Theorem 9. The Hessian of the GAIT entropy with respect to p is given by:

−∇2
pHK

1 [p] = K diag

(
1

Kp

)
−K diag

(
p

[Kp]2

)
K + diag

(
1

Kp

)
K (3.5)

Moreover, −∇2
P[HK

1 [P]] is positive definite in the 2-dimensional case.

A characterization of the definiteness of this Hessian is a promising direction

towards the verification of Conj. 1. Furthermore, since we are interested in the

behavior of the GAIT entropy operating on probability distributions, it is even

sufficient to only consider the action of this matrix as a quadratic form the set of

mass-preserving vectors with entries adding up to zero.

Careful analysis of this Hessian suggests we must strengthen the constraints

on the kernel for Conj. 1 to hold for |X| > 2. We found an instance of a 3x3

kernel satisfying all the conditions in the conjecture and distribution p for which

the Hessian has a negative eigenvalue. It turns out that this specific K violates

a form of triangle inequality. The condition, Kij ≥ KilKlj for all l, translates to

the triangle inequality for an exponential kernel e−d(x,y). Furthermore, the “triangle

inequality” for K implies (Kp)i >= Kij(Kp)j . Intuitively, this means that element

i must be at least as popular (with respect to p) as element j, times how close i

and j are to each other, Kij.

3.1.4 Mutual Information

We now use the GAIT entropy to define similarity-sensitive generalization of

standard concepts related to mutual information. As before, we restrict our attention

to α = 1. This is required to get the chain rule of conditional probability for the

Rényi entropy and to use Conj. 1. Finally, we note that although one could use
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the GAIT divergence to define a mutual information, in a fashion analogous to how

traditional mutual information is defined via the KL divergence, the resulting object

is challenging to study theoretically. Instead, we use a definition based on entropy,

which is equivalent in spaces without similarity structure.

Definition 13. Let X, Y , Z be random variables taking values on the similarity

spaces (X, κ), (Y, λ), (Z, θ) with corresponding Gram matrices K, Λ, Θ. Let

[κ ⊗ λ]((x, y), (x′, y′)) , κ(x, x′)λ(y, y′), and (KQ)x , Ex′∼Q[κ(x, x′)] denotes the

expected similarity between object x and a random Q-distributed object. Let P be the

joint distribution of X and Y . Then the joint entropy, conditional entropy, mutual

information and conditional mutual information are defined following the formulas

in Table. 3.1.

Table 3.1 – Definitions of GAIT mutual information and joint entropy.

Joint Entropy HK⊗Λ[X, Y ] , −Ex,y∼P[log([K⊗Λ]P)x,y]

Conditional Entropy HK,Λ[X|Y ] , HK⊗Λ[X, Y ]−HΛ[Y ]

Mutual Information IK,Λ[X;Y ] , HK[X] + HΛ[Y ]−HK⊗Λ[X, Y ]

Conditional M.I. IK,Λ,Θ[X;Y |Z] , HK,Θ[X|Z] + HΛ,Θ[Y |Z]−HK⊗Λ,Θ[X, Y |Z]

Note that the GAIT joint entropy is simply the entropy of the joint distribution

with respect to the tensor product kernel. This immediately implies monotonicity

in the kernels K and Λ. Note also that the chain rule of conditional probability

holds by definition.

Subject to these definitions, similarity-sensitive versions of a number theorems

analogous to standard results of information theory follow:

Theorem 10. Let X, Y be independent, then HK⊗Λ[X, Y ] = HK[X] + HΛ[Y ].

When the conditioning variables are perfectly identifiable (Λ = I), we recover a

simple expression for the conditional entropy:

Theorem 11. For any kernel κ, HK,I[X|Y ] = Ey∼Py [HK[X|Y = y]].

Using Conj. 1, we are also able to prove that conditioning on additional

information cannot increase entropy, as intuitively expected.

Theorem 12. ♣ For any similarity kernel κ, HK,I[X|Y ] ≤ HK[X].
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Theorem 12 is equivalent to Conj. 1 when considering a categorical Y mixing

over distributions {Xy}y∈Y.

Finally, a form of the data processing inequality (DPI), a fundamental result

in information theory governing the mutual information of variables in a Markov

chain structure, follows from Conj. 1.

Theorem 13. (Data Processing Inequality)♣.

If X → Y → Z is a Markov chain, then IK,Θ[X;Z] ≤ IK,Λ[X;Y ] + IK,Θ,Λ[X;Z|Y ].

Note the presence of the additional term IK,Λ,Θ[X;Z|Y ] relative to the non-

similarity-sensitive DPI given by I[X;Z] ≤ I[X;Y ]. Intuitively, this can be under-

stood as reflecting that conditioning on Y does not convey all of its usual “benefit”,

as some information is lost due to the imperfect identifiability of elements in Y .

When Λ = I this term is 0, and the original DPI is recovered.

3.2 Related work

Theories of Information. Information theory is ubiquitous in modern machine

learning: from variable selection via information gain in decision trees (Ben-David

and Shalev-Shwartz, 2014), to using entropy as a regularizer in reinforcement learning

(Fox et al., 2016), to rate-distortion theory for training generative models (Alemi

et al., 2018). To the best of our knowledge, the work of Leinster and Cobbold (2012);

Leinster and Meckes (2016) is the first formal treatment of information-theoretic

concepts in spaces with non-trivial geometry, albeit in the context of ecology.

Comparing distributions. The ability to compare probability distributions

is at the core of statistics and machine learning. Although traditionally dominated

by maximum likelihood estimation, a significant portion of research on parameter

estimation has shifted towards methods based on optimal transport, such as the

Wasserstein distance (Villani, 2008). Two main reasons for this transition are (i)

the need to deal with degenerate distributions (which might have density only over

a low dimensional manifold) as is the case in the training of generative models

(Goodfellow et al., 2014; Arjovsky et al., 2017; Salimans et al., 2018); and (ii) the

development of alternative formulations and relaxations of the original optimal
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transport objective which make it feasible to approximately compute in practice

(Cuturi and Doucet, 2014; Genevay et al., 2018).

Relation to kernel theory. The theory we have presented in this paper

revolves around a notion of similarity on X. The operator KP corresponds to the

embedding of the space of distributions on X into a reproducing kernel Hilbert space

used for comparing distributions without the need for density estimation (Smola

et al., 2007). In particular, a key concept in this work is that of a characteristic

kernel, i.e., a kernel for which the embedding is injective. Note that this condition

is equivalent to the positive definiteness of the Gram matrix K imposed above.

Under these circumstances, the metric structure present in the Hilbert space can be

imported to define the Maximum Mean Discrepancy distance between distributions

(Gretton et al., 2012). Our definition of divergence also makes use of the object KP,

but has motivations rooted in information theory rather than functional analysis.

We believe that the framework proposed in this paper has the potential to foster

connections between both fields.

3.3 Experiments

3.3.1 Comparison to Optimal Transport

Image barycenters. Given a collection of measures P = {Pi}ni=1 on a similarity

space, we define the barycenter of P with respect to the GAIT divergence as

arg minQ
1
n

∑n
i=1 DK[Pi ||Q]. This is inspired by the work of Cuturi and Doucet

(2014) on Wasserstein barycenters. Let the space X = [1 : 28]2 denote the pixel

grid of an image of size 28× 28. We consider each image in the MNIST dataset

as an empirical measure over this grid in which the probability of location (x, y) is

proportional to the intensity at the corresponding pixel. In other words, image i is

considered as a measure Pi ∈∆|X|. Note that in this case the kernel is a function of

the distance between two pixels in the grid (two elements of X), rather than the

distance between two different images. We use a Gaussian kernel, and compute

KPi by convolving the image Pi with an adequate filter, as proposed by Solomon

et al. (2015).
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Figure 3.5 – Barycenters for each class of MNIST with our divergence (top) and the method of
Cuturi and Doucet (2014) (bottom).

Fig. 3.5 shows the result of gradient-based optimization to find barycenters for

each of the classes in MNIST (LeCun et al., 1998) along with the corresponding

results using the method of Cuturi and Doucet (2014). We note that our method

achieves results of comparable quality. Remarkably, the time for computing the

barycenter for each class on a single CPU is reduced from 90 seconds using the

efficient method proposed by Cuturi and Doucet (2014); Benamou et al. (2014)

(implemented using a convolutional kernel (Solomon et al., 2015)) to less than 5

seconds using our divergence. Further experiments can be found in App. A.4.1.

Figure 3.6 – Left: Generated Swiss roll data. Center and Right: Manifolds for MNIST and
Fashion MNIST.

Generative models. The GAIT divergence can also be used as an objective

for training generative models. We illustrate the results of using our divergence with

a RBF kernel to learn generative models in Fig. 3.6 on a toy Swiss roll dataset, in

addition to the MNIST (LeCun et al., 1998) and Fashion-MNIST (Xiao et al., 2017)

datasets. For all three datasets, we consider a 2D latent space and replicate the

experimental setup used by Genevay et al. (2018) for MNIST. We were able to use the

same 2-layer multilayer perceptron architecture and optimization hyperparameters

for all three datasets, requiring only the tuning of the kernel variance for Swiss roll

data’s scale.
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Moreover, we do not need large batch sizes to get good quality generations from

our models. The quality of our samples obtained using batch sizes as small as 50

are comparable to the ones requiring batch size of 200 by Genevay et al. (2018).

We include additional experimental details and results in App. A.4.3, along with

comparisons to variational auto-encoders (Kingma and Welling, 2014).

3.3.2 Approximating measures

Our method allows us to find a finitely-supported approximation Q =
∑m

j=1 qjδyi
to a (discrete or continuous) target distribution P. This is achieved by minimizing

the divergence DK[P||Q] between them with respect to the locations {yi}mi=1 and/or

the masses of the atoms q ∈ ∆m in the approximating measure. In this section,

we consider situations where P is not a subset of the support of Q. As a result,

the Kullback-Leibler divergence (the case K = I) would be infinite and could not

be minimized via gradent-based methods. However, the GAIT divergence can be

minimized even in the case of non-overlapping supports since it takes into account

similarities between items.

Figure 3.7 – Approximat-
ing a discrete measure with
a uniform empirical mea-
sure.

Figure 3.8 – Approxi-
mating a continuous den-
sity with a finitely-supported
measure.

Figure 3.9 – Top: Original
word cloud. Left: Sparse
approximation with support
size 43. Right: Top 43 origi-
nal TF-IDF words.

In Fig. 3.7, we show the results of such an approximation on data for the

population of France in 2010 consisting of 36,318 datapoints (Charpentier, 2012),

similar to the setting of Cuturi and Doucet (2014). The weight of each atom in the

blue measure is proportional to the population it represents. We use an RBF kernel

and an approximating measure consisting of 50 points with uniform weights, and

use gradient-based optimization to minimize DK with respect to the location of the

atoms of the approximating measure. We compare with K-means (Pedregosa et al.,
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2011) using identical initialization. Note that when using K-means, the resulting

allocation of mass from points in the target measure to the nearest centroid can

result in a highly unbalanced distribution, shown in the bar plot in orange. In

contrast, our objective allows a uniformity constraint on the weight of the centroids,

inducing a more homogeneous allocation. This is important in applications where an

imbalanced allocation is undesirable, such as the placement of hospitals or schools.

Fig. 3.8 shows the approximation of the density of a mixture of Gaussians P
by a uniform distribution Q = 1

N

∑N
i=1 δxi over N = 200 atoms with a polynomial

kernel of degree 1.5, similar to the approximate super-samples (Chen et al., 2010)

task presented by Claici et al. (2018) using the Wasserstein distance. We minimize

DK[P ||Q] with respect to the locations {xi}ni=1. We estimate the continuous

expectations with respect to P by repeatedly sampling minibatches to construct an

empirical measure P̂. Note how the solution is a “uniformly spaced” allocation of

the atoms through the space, with the number of points in a given region being

proportional to mass of the region. See App. A.4.1 for a comparison to Claici et al.

(2018).

Finally, one can approximate a measure when the locations of the atoms are

fixed. As an example, we take an article from the News Commentary Parallel

Corpus (Tiedemann, 2012), using as a measure P the normalized TF-IDF weights

of each non-stopword in the article. Here, K is given by an RBF kernel applied to

the 300-dimensional GLoVe (Pennington et al., 2014) embeddings of each word. We

optimize Q applying a penalty to encourage sparsity. We show the result of this

summarization in word-cloud format in Fig. 3.9. Note that compared to TF-IDF,

which places most mass on a few unusual words, our method produces a summary

that is more representative of the original text. This behavior can be modified by

varying the bandwidth σ of the kernel, producing approximately the same result as

TF-IDF when σ is very small; details are presented in App. A.4.1.

3.3.3 Measuring diversity and counting modes

As mentioned earlier, the exponential of the entropy exp(HK
1 [P]) provides a

measure of the effective number of points in the space (Leinster, 2013). In Fig. 3.10,

we use an empirical distribution to estimate the number of modes of a mixture of

C Gaussians. As the kernel bandwidth σ increases, exp(HK
1 [P̂]) decreases, with

a marked plateau around C. We highlight that the lack of direct consideration
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Figure 3.10 – Left: 1,000 samples from a mixture of 6 Gaussians. Center: Modes detected by
varying σ in our method. Right: Modes detected by varying collision threshold ε in the birthday
paradox-based method.

of geometry of the space in the Shannon entropy renders it useless here: at any

(non-trivial) scale, exp(H[P̂]) equals the number of samples, and not the number of

classes. Our approach obtains similar results as (a form of) the birthday paradox-

based method of Arora et al. (2018), while avoiding the need for human evaluation

of possible duplicates. Details and tests on MNIST can be found in App. A.4.2.
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4 Future Work

Four central questions arise from the presented discussion:

• Is the GAIT entropy a concave function? The theoretical verification of this

property plays a crucial role in the proposed definition for the divergence.

• What are the desired axioms for geometry-aware information concepts? Al-

though the definition of Leinster and Cobbold (2012) enjoys certain desirable

properties, it originates from heuristic rather than axiomatic motivations.

Morevover, at the moment, there is no definite description of the properties

that we would like such a definition to satisfy.

• Is there an operational representation of the proposed entropy? The Shannon

entropy can be seen as the theoretical compression limit achievable for a

specific distribution. Are the any analogous results for the proposed geometric

entropy?

• Which central information theoretic results can be recovered in this framework?

We presented a version of the data processing inequality which accounts for

”lost information” due to imperfect identifiability. Results such as Fano’s

inequality and theorems in the area of lossy compression are natural candidates

for the presented notions.

Parallel to this, the evident connections of our proposed approach with the

kernel methods literature are worthy of further exploration. Our definitions make

use of the probability embedding KP, but their motivations are rooted in information

theory rather than functional analysis. We believe that our framework proposed

has the potential to foster connections between both fields.

We hope the presented methods can prove fruitful in extending frameworks such

as similarity-sensitive cross entropy objectives in the spirit of loss-calibrated decision

theory (Lacoste-Julien et al., 2011), or the use of entropic regularization of policies
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in reinforcement learning (Fox et al., 2016), as well as information bottleneck for

representation learning (Tishby and Zaslavsky, 2015). In particular, Tschannen et al.

(2020) call for alternative measures of information in the context of representation

learning. They state that “a new notion of information should account for both the

amount of information stored in a representation and the geometry of the induced

space necessary for good performance on downstream tasks”. Moreover, the work

of Xu et al. (2020) indirectly re-evaluates the geometry insensitivity of Shannon’s

information by accounting for the modeling power and computational constraints

of the observer. We believe our proposed research is well suited to answering some

of these questions and providing the machine learning community with useful and

much needed theoretical tools.

Finally, we present a tentative timeline regarding the organization of future

research and other PhD landmarks:

• Summer 2020: Completion of internship at Qualcomm Research.

• Fall 2020: Exploration of applicability of geometry based approaches for

representation learning. Supervision of research executed by undergraduate

student at EAFIT University.

• Winter - Summer 2021: Desiderata and axiomatic characterization of geometric

information theory concepts.

• Fall 2021: Application of developed notions to data compression or entropy-

regularized reinforcement learning.

• Winter 2021 - Summer 2022: Further research and thesis writing period.

• Summer 2022: Estimated graduation date.
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5 Conclusion

In this work, we advocated the use of geometry-aware information theory concepts

in machine learning. We presented the similarity-sensitive entropy of Leinster

and Cobbold (2012) along with several important properties that connect it to

fundamental notions in geometry. We then proposed a divergence induced by

this entropy, which compares probability distributions by taking into account the

similarities among the objects on which they are defined. Our proposal shares

the empirical performance properties of distances based on optimal transport

theory, such as the Wasserstein distance (Villani, 2008), but enjoys a closed-form

expression. This obviates the need to solve a linear program or use matrix scaling

algorithms (Cuturi, 2013), reducing computation significantly. Finally, we also

proposed a similarity-sensitive version of mutual information based on the GAIT

entropy.

The pervasiveness of information theoretic ideas and the potential benefits of a

geometric perspective presented in our work portray the proposed research direction

as a promising an impactful agenda.
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A Appendix

A.1 Revisiting parallel lines

A.2 Proofs

A.3 Verifying the concavity of HK
1 [·]

A.4 Experimental details

A.1 Revisiting parallel lines

Let Z ∼ U([0, 1]) , φ ∈ R, and let Pφ be the distribution of (φ, Z) ∈ R2. This is

a uniform distribution on the segment {φ} × [0, 1] ⊂ R2, illustrated in Fig. A.1.

P1P0 P2

R2

Figure A.1 – Distribution Pφ with support
on the 1-dim segment {φ}×[0, 1] for different
values of φ.

−1 −0.5 0.5 1

0.5

1

φ

δ(P0,Pφ)

JS(P0,Pφ)

W1(P0,Pφ)

DK(Pφ,P0)

◦
◦

•

Figure A.2 – Values of the divergences as
functions of φ. KL divergence values are ∞
except at φ = 0.

Our goal is to find the right value of φ for a model distribution Pφ using the

dissimilarity with P0 as a learning signal. The behavior of common divergences

on this type of problem was presented by Arjovsky et al. (2017) as a motivating

example for the introduction of OT distances in the context of GANs.

δ(P0,Pφ) =

0 if φ = 0

1 else
KL(P0,Pφ) = KL(Pφ,P0) =

0 if φ = 0

∞ else

W1(P0,Pφ) = |φ| JS(P0,Pφ) = log(2) δ(P0,Pφ)
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Note that among all these divergences, illustrated in Fig. A.2, only the Wasser-

stein distance provides a continuous (even a.e. differentiable) objective on φ. We

will now study the behavior of the GAIT divergence in this setting.

Recall that the action of the kernel on a given probability measure corresponds to

the mean map Kµ : X→ R, defined by Kµ(x) , Ex′∼µ [κ(x, x′)] =
∫
κ(x, x′) dµ(x′).

In particular, for Pφ:

KPφ(x, y) =

∫
R2

κ((x, y), (x′, y′)) dPφ(x′, y′) =

∫ 1

0

κ((x, y), (φ, y′)) dy′.

Let us endow R2 with the Euclidean norm ‖·‖2, and define the kernel κ((x, y), (x′, y′)) ,

exp(−‖(x, y)− (x′, y′)‖22). Note that this choice is made only for its mathematically

convenience in the following algebraic manipulation, but other choices of kernel are

possible. In this case, the mean map reduces to:

KPφ(x, y) =

∫ 1

0

exp
[
−
(
(x− φ)2 + (y − y′)2

)]
dy′ = exp

[
−(x− φ)2

] ∫ 1

0

exp
[
−(y − y′)2

]
dy′.︸ ︷︷ ︸

, Iy , independent of φ.

We obtain the following expressions for the terms appearing in the divergence:

E(x,y)∼Pφ log

[
KPφ(x, y)

KP0(x, y)

]
= E(x,y)∼Pφ log

[
exp [−(x− φ)2]SSIy

exp [−x2]SSIy

]
φ2.

E(x,y)∼P0

[
KPφ(x, y)

KP0(x, y)

]
= E(x,y)∼P0 exp

[
x2 − (x− φ)2

]
= exp{−φ2}.

Finally, we replace the previous expressions in the definition of the GAIT

divergence. Remarkably, the result is a smooth function of the parameter φ with a

global optimum at φ = 0. See Fig. A.2.

DK(Pφ,P0) = 1+E(x,y)∼Pφ log

[
KPφ(x, y)

KP0(x, y)

]
−E(x,y)∼P0

[
KPφ(x, y)

KP0(x, y)

]
= φ2+1−e−φ2 ≥ 0.

A.2 Proofs

Theorem 9. −∇2
P[HK

1 [P]] is positive definite in the 2-dimensional case.
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Proof. In this case, we can express the distribution P in terms of a single degree of

freedom p as [p, 1− p]. Moreover, denote the off-diagonal kernel entry as 0 ≤ a < 1.

Thus, the GAIT entropy can be written as:

−H1[p] = p log[p+ (1− p)a] + (1− p) log[pa+ (1− p)].

The first and second derivatives of −H1[p] with respect to p are given by:

−∇p[H1[p]] =
a

1 + (a− 1)p
− a

a+ (1− a)p
− log[1 + (a− 1)p] + log[a+ (1− a)p]

−∇2
p[H1[p]] = −(a− 1)2(1− p)

(1 + (a− 1)p)2
− (1− a)2p

(a+ (1− a)p)2
+

2(1− a)

1 + (a− 1)p
+

2(1− a)

a+ (1− a)p

=
a(2− a− a3) + (a− 1)4p(1− p)
(1 + (a− 1)p)2(a+ (1− a)p)2

.

This is clearly greater than zero whenever p ∈ (0, 1), since a ∈ [0, 1).

Theorem 10. Let X, Y be independent, then HK⊗Λ[X, Y ] = HK[X] + HΛ[Y ].

Proof.

HK⊗J[X, Y ] = Ex,y log [Ex′,y′κ(x, x′)λ(y, y′)]

= Ex,y log [Ex′ [Ey′κ(x, x′)λ(y, y′)]]

= Ex,y log [Ex′ [κ(x, x′)]Ey′ [λ(y, y′)]]

= Ex,y log [Ex′ [κ(x, x′)]] + log [Ey′ [λ(y, y′)]]

= Ex log [Ex′ [κ(x, x′)]] + Ey log [Ey′ [λ(y, y′)]]

= HK[X] + HΛ[Y ].

Theorem 11. For any kernel κ, HK,I[X|Y ] = Ey∼Py [HK[X|Y = y]].
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Proof.

HK,I[X|Y ] = HK,I[X, Y ]−HI[Y ]

= Ex,y log [Ex′,y′κ(x, x′)1(y, y′)]−HI[Y ]

= Ex,y log

[∫
x′

∫
y′
p(x′, y′)κ(x, x′)1(y, y′)

]
−HI[Y ]

= Ex,y log

[∫
x′
p(x′|y)p(y)κ(x, x′)

]
−HI[Y ]

= Ex,y log
[
p(y)Ex′|yκ(x, x′)

]
−HI[Y ]

= Ex,y log
[
Ex′|yκ(x, x′)

]
= Ey

[
Ex|y log

[
Ex′|yκ(x, x′)

]]
= Ey

[
HK[X|y]

]
.

Theorem 12. ♣ For any similarity kernel κ, HK,I[X|Y ] ≤ HK[X].

Proof. HK,I[X|Y ] = Ey∼Py [HK[X|Y = y]] = Ey∼Py [HK[X|Y = y]]
(Jensen)

≤ HK[Ey∼Py [X|Y =

y]] = HK[X].

Lemma 1. (Chain Rule of Mutual Information)♣. IK,Λ,Θ[X;Y, Z] = IK,Λ[X;Y ]+

IK,Λ,Θ[X;Y |Z]

Proof. By definition:

IK,Θ[X;Z] = HK[X] + HΘ[Z]−HK⊗Θ[X,Z].

IK,Λ,Θ[X;Y |Z] = HK,Θ[X|Z] + HΛ,Θ[Y |Z]−HK,Λ,Θ[X, Y |Z]

= HK,Θ[X,Z]−HΘ[Z] + HΛ,Θ[Y, Z]−HΘ[Z]−HK,Λ,Θ[X, Y, Z] + HΘ[Z]

Thus, IK,Θ[X;Z] + IK,Λ,Θ[X;Y |Z] = HK[X] + HΛ,Θ[Y, Z] − HK,Λ,Θ[X, Y, Z] =

IK,Λ,Θ[X;Y, Z].

Theorem 13. (Data Processing Inequality)♣.

If X → Y → Z is a Markov chain, IK,Θ[X;Z] ≤ IK,Λ[X;Y ] + IK,Θ,Λ[X;Z|Y ].
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Proof.

IK,Λ,Θ[X;Y, Z]
(Thm. 1)

= IK,Λ[X;Y ] + IK,Λ,Θ[X;Y |Z]
(Thm. 1)

= IK,Θ[X;Z] + IK,Θ,Λ[X;Z|Y ].

Therefore IK,Λ[X;Z] + IK,Λ,Θ[X;Y |Z] = IK,Θ[X;Z] + IK,Θ,Λ[X;Z|Y ]. Finally, we

have that IK,Λ,Θ[X;Y |Z] ≥ 0, which in turn implies that IK,Λ[X;Z] ≤ IK,Λ[X;Y ] +

IK,Θ,Λ[X;Z|Y ].

Additionally, we are able to prove a series of inequalities illuminating the influence

of the similarity matrix on joint entropy in extreme cases:

Theorem 7. For any similarity kernels κ and λ, HK[X] = HK⊗J[X, Y ] ≤ HK⊗Λ[X, Y ] ≤
HK⊗I[X, Y ] = HI[Y ] + HK,I[X|Y ]

Proof. The first result, HK[X] = HK⊗J[X, Y ] follows by noting that λ(y, y′) = 1 for

all y, y′:

HK⊗J[X, Y ] = Ex,y log [Ex′,y′κ(x, x′)λ(y, y′)] = Ex log [Ex′κ(x, x′)] = HK[X]

HK⊗J[X, Y ] ≤ HK⊗Λ[X, Y ] ≤ HK⊗I[X, Y ] follows by monotonicity of the entropy

in the similarity matrices.

HK⊗I[X, Y ] = HI[Y ]+HK,I[X|Y ] follows by the chain rule of conditional entropy.

A.3 Verifying the concavity of HK
1 [·]

A.3.1 Proof attempts

We have made several attempts to show that the GAIT entropy is a concave

function at α = 1. As this is a critical component in our theoretical developments, we

provide a list of our previously unsuccessful approaches, in the hopes of facilitating

the participation of interested researchers in answering this question.

• Jensen’s inequality for the log(Kp) or log(Kq) terms is too loose.
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• The bound log b ≤ b
a

+ log(a)− 1 applied to the ratio Kp
Kq

results in a loose

bound.

• −p log(p) is known to be a concave function. However, the action of the simi-

larity matrix on the distribution inside the logarithmic factor in −pT log(Kp)

complicates the analysis.

• The Donsker-Varadhan representation of the Kullbach-Leibler divergence goes

in the wrong direction and adds extra terms.

• Bounding a Taylor series expansion of the gap between the linear approxima-

tion of an interpolation and the value of the entropy along the interpolation.

The analysis is promising but becomes unwieldy due to the presence of Kq
Kp

terms.

A.3.2 Numerical experiments

Random search on DK[p||q] ≥ 0. We perform a search over vectors p and

q drawn randomly from the simplex, and over random positive definite similarity

Gram matrices K. We have tried restricting our searches to p and q near the

center of the simplex and away from the center, and to K closer to I or J. In every

experiment, we find that DK[p||q] ≥ 0.

Quantity Sampling process

n ∈ Z n ∼ Uniform({2, . . . , 11})
γ ∈ Zn×n γi,j ∼ Uniform({0, . . . , 9})
L ∈ Rn×n Li,j ∼ Uniform(0, 1)γi,j

K ∈ Rn×n K = min(1, I + LLT/n)

α ∈ Rn αi ∼ Uniform(0, 10)

β ∈ Rn βi ∼ Uniform(0, 10)

p ∈∆n p ∼ Dirichlet(α)

q ∈∆n q ∼ Dirichlet(β)

Table A.1 – Experimental
setup for random search.

Figure A.3 – Histogram of GAIT entropies
from settings in Tab. A.1.

Consider the wide experimental setup for search defined in Tab. A.1. Fig. A.3

shows the histogram of DK over this search, empirically showing the non-negativity
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of the divergence, and, thus the concavity of the GAIT entropy.

Random search on −∇2
P[HK

1 [P]]. We empirically study the positive definite-

ness of this matrix via its spectrum. For this, we sample a set of n points in Rd as

well as a (discrete) distribution P over those points. Then we construct the Gram

matrix induced by the kernel κ(x, y) = exp (−||x− y||p). The location of the points,

P, n, d and p >= 1 are sampled randomly.

We performed extensive experiments under this setting and never encountered an

instance such that −∇2
P[HK

1 [P]] would have any negative eigenvalues. We believe this

experimental setting is more holistic than the above experiments since it considers

the whole spectrum of the (negative) Hessian rather than a “directional derivative”

towards another sampled distribution Q.

Optimization. As an alternative to random search, we also use gradient-

based optimization on p, q and K to minimize DK[p||q]. Starting from random

initializations, our objective function always converges to values very close to (yet

above) zero.

Furthermore, freezing K and optimizing over either p or q while holding the

other fixed, results in p = q at convergence. On the other hand, if p and q are

fixed such that p 6= q, optimization over K converges to K = J. We note from the

definition of the GAIT divergence that when p = q or K = J, DK[p||q] = 0, which

matches the value we obtain at convergence when trying to minimize this quantity.

Recall that the experiments presented in Sec. 3.3 involve the minimization of

some GAIT divergence. We never encountered a negative value for the GAIT

divergence during any of these experiments.

A.3.3 Finding maximum entropy distributions with gradi-

ent ascent

An algorithm with an exponential run-time to find exact maximizers of the

entropy HK
α [·] is presented in Leinster and Meckes (2016). We exploit the fact that

the objective is amenable to gradient-based optimization techniques and conduct

experiments in spaces with thousands of elements. This also serves as an empirical

test for the conjecture about the concavity of the function: there must be a unique

maximizer for HK
1 [·] if it is concave.
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Figure A.4 – Optimization curves for measures with support 1000 in dimension 5 (left) and 100
(right).

We test our ability to find distributions with maximum GAIT entropy via

gradient descent. We sample 1000 points in dimensions 5 and 10, and construct

a similarity space using a RBF kernel with σ = 1. Then we perform 100 trials by

setting the logits of the initialization using a Gaussian distribution with variance

4 for each of the 1000 logits that describe our distribution. We use Adam with

learning rate 0.1 and α = 1. The optimization results are shown in Fig. A.4.

We reliably obtain negligible variance in the objective value at convergence across

random initializations, thus providing an efficient alternative for finding approximate

maximum-entropy distributions.

A.4 Experimental details

A.4.1 Interpolation and Approximation

In all experiments for Figs. 3.7-3.5, we minimize the GAIT divergence using

AMSGrad (Reddi et al., 2018) in PyTorch (Paszke et al., 2019). We parameterize

the weights of empirical distributions using a softmax function on a vector of

temperature-scaled logits. All experiments in the section are run on a single CPU.

Approximating measures with finite samples

In Fig. 3.7 we optimize our approximating measure using Adam for 3000 steps

with a learning rate of 10−3 and minibatches constructed by sampling 50 examples

at each step. We use a Gaussian kernel with σ = 0.02.

In Fig. 3.8, we approximate a continuous measure with an empirical measure

supported on 200 atoms. We execute Adam for 500 steps using a learning rate of
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0.05 and minibatches of 100 samples from the continuous measure to estimate the

discrepancy. The similarity function is given by a polynomial kernel with exponent

1.5: κ(x,y) , 1
1+‖x−y‖1.5 . Fig. A.5 shows that we achieve results of comparable

quality to those of Claici et al. (2018).

Figure A.5 – Left and Center: Approximation of a mixture of Gaussians density using our
method and the proposal of Claici et al. (2018) (taken from paper). Right: i.i.d samples from the
real data distribution.

Image barycenters

We compute barycenters for each class of MNIST and Fashion-MNIST. We

perform gradient descent with Adam using a learning rate of 0.01 with minibatches

of size 32 for 500 optimization steps. We use a Gaussian kernel with σ = 0.04. The

geometry of the grid on which images are defined is given by the Euclidean distance

between the coordinates of the pixels. In Fig. A.6, we provide barycenters for the

each of classes of Fashion MNIST computed via a combination of the methods of

Benamou et al. (2014) and Cuturi and Doucet (2014).

Figure A.6 – Barycenters for Fashion MNIST computed using our method.

Text summarization

For our text example, we use the article from the STAT-MT parallel news corpus

titled “Why Wait for the Euro?”, by Leszek Balcerowicz. The full text of the article

can be found at https://pastebin.com/CnBgbpsJ. We use the 300-dimensional

GLoVe vectors found at http://nlp.stanford.edu/data/glove.6B.zip as word
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embeddings. TF-IDF is calculated over the entire English portion of the parallel

news corpus using the implementation in Scikit-Learn (Pedregosa et al., 2011).

We filter stopwords based on the list provided by the Natural Language Toolkit

(Bird et al., 2009). To encourage sparsity in the approximating measure q, we

add the 0.75-norm of q to the divergence loss, weighted by a factor of 0.01. We

optimize the loss with gradient descent using Adam optimizer, with hyperparameters

β1 = 0, β2 = 0.9, learning rate = 0.001, for 25,000 iterations. Since a truly sparse q

is not reachable using the softmax function and gradient descent, we set all entries

qi < 0.01 to be 0 and renormalize after the end of training. q is represented by the

softmax function, and is initialized uniformly.

We examine the influence of varying σ in Fig. A.7. Decreasing σ leads to K

approaching I, and the resulting similarity more closely approximates the original

measure. As σ approaches 0.01, the two measures become almost identical. See Fig.

A.7, bottom-left and bottom-right.

Figure A.7 – Top-left: Word cloud generated by our method at σ = 0.5. Top-right: Word
cloud generated by our method at σ = 0.1. Bottom-left: Word cloud generated by our method
at σ = 0.01. Bottom-right: Top 43 original TF-IDF words.

A.4.2 GAN evaluation and mode counting

When the data available takes the form of many i.i.d. samples from a continuous

distribution, a natural choice is to generate a Gram matrix K using a similarity
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measure such as an RBF kernel κσ(x,y) = exp
(
−||x−y||2

2σ2

)
.

For comparison, we adapt the birthday paradox-based approach of Arora et al.

(2018). Strictly speaking, their method requires human evaluation of possible

duplicates, and is thus not comparable to our approach. As such, we propose an

automated version using the same assumptions. We define x and y as colliding when

d(x,y) < ε, and note that the expected number of collisions for a distribution with

support n in a sample of size m is c = m(m−1)
n

. We can thus estimate n̂ = m(m−1)
c

.

When varying ε, we observe behavior very similar to that of our entropy measure,

with a plateau at n̂ = C in our example of a mixture of C Gaussians. The results

of this comparison are presented in Fig. 3.10.

Figure A.8 – Left: A 2000-image subset of MNIST reduced to 2 dimensions by UMAP. Center:
Our mode estimation. Right: The birthday paradox method estimate. Note that the left axis is
logarithmic.

To test this on a more challenging dataset, we use a 2-dimensional representation

for MNIST obtained using UMAP (McInnes et al., 2018), shown in Fig. A.8.

Although our method no longer shows a clear plateau at HK
1 [P] ≈ log 10 ≈ 2.3, it

does transition from exponential to linear decay at approximately this point, which

coincides with the point of minimum curvature with respect to σ, HK
1 [P] ≈ log 10.

Similar behavior is observed in the case with birthday-inspired estimate; here the

point of minimum curvature has n̂ ≈ 8.

Finally, we also apply this method to evaluating the diversity of GAN samples.

We train a simple WGAN (Arjovsky et al., 2017) on MNIST, and find that the

assessed entropy increases steadily as training progresses and the generator masters

more modes (see Fig. A.9). Note that the entropy estimate stabilizes once the

generator begins to produce all 10 digits, but long before sample quality ceases

improving.

In all of the experiments corresponding to mode counting, we use α = 1 and

the standard RBF kernel κσ(x,y) = exp
(
−‖x−y‖2

2σ2

)
. Note that this differs from

the kernel given in Section 3.1 by using squared Euclidean distance rather than
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Figure A.9 – Left: The estimated numbers of modes in the output of a WGAN trained on
MNIST. Right: Samples from the same WGAN after 5, 15 and 25 epochs.

Euclidean distance. To estimate the point with minimum curvature, we find the

value of log n̂ or HK
1 [p] at 100 values of σ or ε evenly spaced between 0.1 and 25,

and empirically estimate the second derivative with respect to σ or ε. In the case

of the birthday estimate, which is not continuous on finite sample sizes, we use a

Savitzky-Golay filter (Savitzky, 1964) of degree 3 and window size 11 to smooth

the derivatives. We estimate the point of minimum curvature to be the first point

when the absolute second derivative passes below 0.01.

To evaluate GANs, we train a simple WGAN-GP (Gulrajani et al., 2017) with a

3-hidden-layer fully-connected generator, using the ReLU nonlinearity and 256 units

in each hidden layer, on a TITAN Xp GPU. Our latent space has 32 dimensions

sampled i.i.d. from N(0, 1) and the discriminator is trained for four iterations for

each generator update. We use the Adam with learning rate 10−4 and β1 = 0,

β2 = 0.9. The weight of the gradient penalty in the WGAN-GP objective is λ = 10.

To count the number of modes in the output of the generator, we use an instance

of UMAP fitted to the entire training set of MNIST to embed all input in R2. We

use 1,000 samples of true MNIST data to estimate values of σ (for our entropy

method) and ε for the birthday paradox-based method that minimize curvature

and yield estimates of expHK
1 [p] ≈ 10 and n̂ ≈ 10. We then apply these to the

generated outputs after each of the first 30 epochs, and report n̂ or expHK
1 [p].

A.4.3 Generative models

For all the generative models in Section 3.3.1, we employ an experimental setup

similar to the setup used by Genevay et al. (2018) for learning generative models

on MNIST. Thus, our generative model is a 2-layer multilayer perceptron with one

hidden layer of 500 dimensions with ReLU non-linearities, using a 2D latent space,
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trained using mini-batches of size 200. Note that their method requires a batch size

of 200 to get reasonable generations, but we also obtain comparable results with

a significantly smaller batch size of 50. Since Genevay et al. (2018) sample latent

codes from a unit square, we do the same for MNIST here for easy comparison but

sample from a standard Gaussian for Swiss roll and Fashion-MNIST datasets. We

train our models by minimizing DK[P̂ || Q̂], where P̂ is the target empirical measure

and Q̂ is the model. K is the Gram matrix corresponding to a RBF kernel with

σ = 0.2 for Swiss roll data, and σ = 1.6 for MNIST and Fashion-MNIST. We use

Adam with a learning rate of 5× 10−4 to train our models. Fig. A.10 compares the

manifolds learned by minimizing our divergence with batch sizes 200 and 50 with

that learned by minimizing the Sinkhorn loss (Genevay et al., 2018) for MNIST.

Figure A.10 – Left: Manifold learned by minimizing Sinkhorn loss, taken from Genevay et al.
(2018). Center: Manifold learned by minimizing GAIT divergence using their experimental setup.
Right: Manifold learned by minimizing GAIT divergence with batch size 50.

We further compare our generations with those done by variational auto-encoders

(Kingma and Welling, 2014). Following their setup, we use tanh as the non-linearity

in the 2-layer multilayer perceptron and a lower batch size of 100, along with the

latent codes sampled from a standard Gaussian distribution. We compare our results

with theirs in Fig. A.11. Both figures are generated using latent codes obtained

by taking the inverse c.d.f. of the Gaussian distribution at the corresponding grid

locations, similar to the work of Kingma and Welling (2014).

Finally, in Fig. A.12, we illustrate Fashion-MNIST and MNIST samples generated

by our generative model with a 20D latent space. The quality of our generations

with a 20D latent space is comparable to the samples generated by the variational

auto-encoder with the same latent dimensions in Kingma and Welling (2014).
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Figure A.11 – Left: Manifold learned by Variational Autoencoder, taken from Kingma and
Welling (2014). Right: Manifold learned by minimizing GAIT divergence using their experimental
setup.

Figure A.12 – Left: Fashion-MNIST samples from our model with 20D latent space. Center:
MNIST samples from our model with 20D latent space. Right: MNIST samples from Variational
Autoencoder with 20D latent space, picture taken from (Kingma and Welling, 2014).

A.4.4 Computational complexity

Solomon et al. (2015) shows how the computation of KP can be efficiently

performed using convolutions in the case of image-like data. For d× d images, this

takes time O(d3), instead of O(d4) using a naive approach. Sinkhorn regularized

optimal transport requires performing this computation this computation L, which

highlights the value of the work of Solomon et al. (2015) for applications with large

d. The complexity for computing the close-form GAIT divergence is thus O(d3),

and the cost for approximating solving the optimal transport problem via Sinkhorn

iterations is O(Ld3). We draw the attention of the reader to the distinction between

the width d of the image, and the size of the support of the measures, n = d2.

Fig. A.13 shows compares the time required by the convolutional approaches of
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Figure A.13 – Time comparison between the computation of the GAIT and Sinkhorn divergences
between randomly generated images of varying size. Error bars correspond to one standard
deviation over a sample of size 30.

the GAIT divergence computation and the Sinkhorn algorithm approximating the

Sinkhorn divergence, between two images of size d× d. Genevay et al. (2018) found

L = 100 necessary to perform well on generative modeling. Even for the compara-

tively low values of L presented in Fig. A.13, we observe that the computation of

the GAIT divergence is significantly faster than that of the approximate Sinkhorn

divergence. It is possible to compute the GAIT divergence between two images of

one megapixel in a quarter of a second (horizontal line).
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Projections for Regularized Transportation Problems. SIAM Journal on Scientific

Computing, 37(2):A1111–A1138, 2014.

S. Bird, E. Loper, and E. Klein. Natural Language Processing with Python. O’Reilly

Media Inc., 2009.

45



S. Boyd and L. Vandenberghe. Convex Optimization. 2004.

L. Bregman. The relaxation method of finding the common point of convex sets

and its application to the solution of problems in convex programming. USSR

Computational Mathematics and Mathematical Physics, 7(3):200 – 217, 1967.

A. Charpentier. French dataset: population and GPS coordinates, 2012.

Y. Chen, M. Welling, and A. Smola. Super-samples from Kernel Herding. In UAI,

2010.

S. Claici, E. Chien, and J. Solomon. Stochastic Wasserstein Barycenters. In ICML,

2018.

T. M. Cover and J. A. Thomas. Elements of Information Theory. 2005.

I. Csiszár. Axiomatic characterizations of information measures. Entropy, 2008.

I. Csiszár and P. C. Shields. Information Theory and Statistics: A Tutorial.

Foundations and TrendsTM in Communications and Information Theory, 2004.

M. Cuturi. Sinkhorn Distances: Lightspeed Computation of Optimal Transport. In

NeurIPS. 2013.

M. Cuturi and A. Doucet. Fast Computation of Wasserstein Barycenters. In ICML,

2014.

R. Fox, A. Pakman, and N. Tishby. Taming the Noise in Reinforcement Learning

via Soft Updates. In UAI, 2016.
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